首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2522篇
  免费   336篇
  国内免费   135篇
化学   2491篇
晶体学   1篇
力学   6篇
综合类   22篇
数学   88篇
物理学   385篇
  2024年   6篇
  2023年   55篇
  2022年   495篇
  2021年   429篇
  2020年   239篇
  2019年   117篇
  2018年   81篇
  2017年   108篇
  2016年   163篇
  2015年   160篇
  2014年   136篇
  2013年   192篇
  2012年   140篇
  2011年   98篇
  2010年   71篇
  2009年   83篇
  2008年   63篇
  2007年   63篇
  2006年   48篇
  2005年   33篇
  2004年   24篇
  2003年   33篇
  2002年   23篇
  2001年   15篇
  2000年   18篇
  1999年   21篇
  1998年   14篇
  1997年   16篇
  1996年   10篇
  1995年   9篇
  1994年   7篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1981年   1篇
排序方式: 共有2993条查询结果,搜索用时 15 毫秒
101.
The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3C2TX/Pt–Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx) to form a sarcosine biosensor (GCE/Ti3C2TX/Pt–Pd/SOx). The prominent electrocatalytic activity and biocompatibility of Ti3C2TX/Pt–Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2. Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3C2TX/Pt–Pd will provide a meaningful reference for detecting other cancer biomarkers.  相似文献   
102.
Human Mammary Tumor Virus (HMTV) or Mouse Mammary Tumor Virus holds similarity as an endogenous onco-retrovirus belongs to retroviridae family, predominantly infects the epithelial cell of human as well as mouse. With the recognition of nano-biosensor in nanotechnology, ideal interdigitated electrode (IDE) was genuinely performed for HMTV detection. Aluminium enriched IDE (AlIDE) was fabricated for high performance detection with a cost-effective photolithography technique. In this research, (3-glycidyloxypropyl) trimethoxysilane refined platform was selected to detect the conductivity with HMTV target DNA interaction on the designed AlIDE. Strong binding affinity of streptavidin-biotin with target DNA enhanced the sensitivity by empowering higher number of HMTV probe and target complementation on sensing surface. Furthermore, the target DNA was immobilized on probe modified AlIDE and a quantitative value of 100 aM attained as a lowest detection. A linear with dose-dependent duplex formation was shown with the regression coefficient value of 0.964. Negative control has shown insignificant detection at 10 pM, which justifies the higher fold discrimination with specificity. The excellence of AlIDE performance in detection of HMTV may pave the way for more verification on other diseases.  相似文献   
103.
Metabolomics, one of the latest omics technologies, is employed to reveal overall metabolic trajectories, identify disease causative mechanisms and provide information for preventive diagnosis and drug targeting. Cancer is a disease known to alter cellular metabolism and so metabolomics can play an important role in the early diagnosis of cancer and in the evaluation of medical interventions and treatments for cancer. Many metabolomics studies rely on high-sensitive and high-throughput mass spectrometry platforms. In recent years, various mass spectrometry(MS) methodologies have been developed and enriched the scope of metabolite detection, contributing to disease studies, such as diabetes, cancer, and depression. Colorectal cancer is the third most diagnosed cancer worldwide and its incidence ranked third in China. This review focuses on the mass spectrometry technologies in metabolomics and summarizes the progress of metabolomics research in colorectal cancer.  相似文献   
104.
A sensitive method based on liquid chromatography combined with a diode array detector was developed and validated to simultaneously determine tamoxifen, and its active metabolites N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen in human plasma samples. The green and sustainable vortex-assisted dispersive liquid-phase microextraction technique based on the natural hydrophobic deep eutectic solvent was used for the extraction and preconcentration of the analytes. Chemometrics and multivariate analysis were used to optimize the independent variables including the type and volume of deep eutectic solvent, extraction time, and ionic strength. Under optimal conditions, calibration curves were linear in a suitable range with the lower limits of quantification (0.8–10.0 μg/L), which covered the relevant concentrations of the analytes in plasma samples for a clinical study. Intra- and interday precision evaluated at three concentrations for the analytes were lower than 8.2 and 12.1%, respectively. Accuracy was in the range of 94.9–104.7%. The applicability of the developed method on human plasma samples illustrated the range 45.1–72.8, 98.4–128.3, 0.9–1.2, and 2.7–6.1 μg/L for tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen, respectively. The validated method can be effective for the pharmacokinetics, pharmacodynamics, and therapeutic drug monitoring studies of tamoxifen and its main metabolites in biological fluids.  相似文献   
105.
Cervical cancer, a silent killer is a second most common type of malignant tumor detected in women’s world wide. In modern medicine the usage of phytochemicals to develop drugs for treating various chronic diseases is rapidly increasing. One such phytochemical is visnagin, a furanochrome present in fruits of Ammi visnaga. We investigated the anticarcinogenic potency of visnagin against human cervical carcinoma cells. The antioxidant potency of visnagin was analyzed with FRAP assay, DPPH assay, Chemiluminscence assay and ORAC assay. The cytotoxic effect of visnagin on normal epithelial Vero cells and human cervical cancer HeLa cells were analyzed using MTT assay. The effect of visnagin on antioxidant system was examined by measuring the levels of TBARS, SOD and GSH using the colorimetric assay techniques. DCFH-DA staining, AO/EtBr staining, propidium iodide staining was performed to assess the apoptotic induction potency of visnagin against cervical cancer cells. The ability of visnagin to inhibit cancer cell migration was examined with scratch wound assay. The anticarcinogenic property of visnagin was confirmed by analyzing the gene expression of PI3K/AKT/mTOR signaling proteins and MAPK signaling proteins using qPCR analysis. Visnagin exhibited increased Trolox equivalent value in all the four antioxidant potency estimating experiments. Visnagin induced cytotoxic effect only on carcinoma cells, decreased the antioxidants and increased the generation of ROS. It also induced apoptosis and inhibited the cancer cell migration. The qPCR analysis confirms visnagin decreases the gene expression cell cycle regulating protein of both PI3K/AKT/mTOR and MAPK pathway. Overall our results authentically prove visnagin inhibits the progression of cervical cancer in vitro. Therefore it can be an ideal drug of choice which can subject to further investigation for treating cervical cancer.  相似文献   
106.
In the recent study, we decided to survey the capacities of metallic nanoparticles formulated by Allium monanthum (AgNPs) as a novel chemotherapeutic drug in the treatment of several types of breast cancers. Characterization of AgNPs was done by UV–Visible Spectroscopy (UV–Vis), Fourier Transformed Infrared Spectroscopy (FT‐IR), Transmission Electron Microscopy (TEM), and Field Emission Scanning Electron Microscopy (FE‐SEM). For investigating the antioxidant properties of AgNO3, Allium monanthum, and AgNPs, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. To survey the cytotoxicity and anti-breast cancer effects of AgNO3, Allium monanthum, and AgNPs, MTT assay was used on the breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), infiltrating lobular carcinoma of breast (UACC-3133), inflammatory carcinoma of the breast (UACC-732), and metastatic carcinoma (MDA-MB-453) cell lines. DPPH test revealed similar antioxidant potentials for Allium monanthum, AgNPs, and butylated hydroxytoluene. Silver nanoparticles had very low cell viability and anti-breast cancer properties dose-dependently against MCF7, Hs 578Bst, Hs 319.T, UACC-3133, UACC-732, and MDA-MB-453 cell lines without any cytotoxicity on the normal cell line. The best result of anti-breast cancer properties of AgNPs against the above cell lines was seen in the case of the UACC-3133 cell line. According to the above findings, the silver nanoparticles containing Allium monanthum aqueous extract can be administrated in humans for the treatment of several types of breast cancer especially breast adenocarcinoma, breast carcinoma, infiltrating ductal cell carcinoma, infiltrating lobular carcinoma of breast, inflammatory carcinoma of the breast, and metastatic carcinoma.  相似文献   
107.
DNA G-quadruplexes (G4s) are key structures for the development of targeted anticancer therapies. In this context, ligands selectively interacting with G4s can represent valuable anticancer drugs. Aiming at speeding up the identification of G4-targeting synthetic or natural compounds, we developed an affinity chromatography-based assay, named G-quadruplex on Oligo Affinity Support (G4-OAS), by synthesizing G4-forming sequences on commercially available polystyrene OAS. Then, due to unspecific binding of several hydrophobic ligands on nude OAS, we moved to Controlled Pore Glass (CPG). We thus conceived an ad hoc functionalized, universal support on which both the on-support elongation and deprotection of the G4-forming oligonucleotides can be performed, along with the successive affinity chromatography-based assay, renamed as G-quadruplex on Controlled Pore Glass (G4-CPG) assay. Here we describe these assays and their applications to the screening of several libraries of chemically different putative G4 ligands. Finally, ongoing studies and outlook of our G4-CPG assay are reported.  相似文献   
108.
In this study, a green protocol for supporting CuO nanoparticles over chitosan-modified amino-magnetic nanoparticles is described. The physicochemical and morphological properties of the desired nanocomposite assessed by various techniques like ICP, FT-IR, FE-SEM, EDX, TEM, XRD and VSM. In the oncological part of the recent study, the Cu(NO3)2, Fe3O4, and Fe3O4-NH2@CS/CuO nanocomposite cell viability was very low against human gastric cancer cell lines i.e. MKN45, AGS, and KATO III and human colorectal carcinoma cell lines i.e. HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10. The IC50 of Fe3O4-NH2@CS/CuO nanocomposite against MKN45, AGS, KATO III, HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10 cell lines were 517, 525, 544, 282, 214, 420, and 477 µg/mL, respectively. Thereby, the best anti-gastro-duodenal cancers findings of our Fe3O4-NH2@CS/CuO nanocomposite was seen in the HCT 116 cell line case.  相似文献   
109.
The overexpression of lncRNA HOTAIR can result in cancer progression through upregulation of the Akt signaling pathway. We aimed to evaluate the anticancer effects of levan polysaccharide from Erwinia herbicola on colorectal cancer cells (HT-29) and explore the role of the ROS-mediated HOTAIR/Akt signaling pathway. The HT-29 cancer cells were treated with levan either alone or along with N-acetyl-L-cysteine (NAC), as a potential antioxidant for 24 hrs and different assays including MTT, LDH, ROS, apoptosis, SOD activity, CAT activity, caspase-3 activity, qRT-PCR, and western blot analysis were performed. It was shown that levan treatment induces apparent reduction in cell viability, SOD and CAT activity, HOTAIR expression, the ratio of pAkt protein level and a significant increase in the ROS level, apoptosis induction, and caspase-3 activity, which were effectively suppressed by NAC co-treatment. These data indicated the effective antiproliferative effect of levan on colorectal cancer cells, in which downregulation of ROS-mediated HOTAIR/Akt plays an important role.  相似文献   
110.
Anti-cancer activity of catechin nanoemulsions prepared from Oolong tea leaf waste was studied on prostate cancer cells DU-145 and DU-145-induced tumors in mice. Catechin nanoemulsions composed of lecithin, Tween-80 and water in an appropriate proportion was prepared with high stability, particle size of 11.3 nm, zeta potential of −67.2 mV and encapsulation efficiency of 83.4%. Catechin nanoemulsions were more effective than extracts in inhibiting DU-145 cell growth, with the IC50 being 13.52 and 214.6 μg/mL, respectively, after 48 h incubation. Furthermore, both catechin nanoemulsions and extracts could raise caspase-8, caspase-9 and caspase-3 activities for DU-145 cell apoptosis, arresting the cell cycle at S and G2/M phases. Compared to control, catechin nanoemulsion at 20 μg/mL and paclitaxel at 10 μg/mL were the most effective in reducing tumor volume by 41.3% and 52.5% and tumor weight by 77.5% and 90.6% in mice, respectively, through a decrease in EGF and VEGF levels in serum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号