首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   6篇
  国内免费   1篇
化学   18篇
物理学   7篇
  2022年   1篇
  2021年   1篇
  2020年   7篇
  2019年   1篇
  2018年   3篇
  2015年   2篇
  2014年   3篇
  2012年   1篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
Carbon dots (CDs) are a new class of materials which have been extensively studied due to their unique optical properties, low toxicity, and abundance of raw materials to synthesize them. In this minireview, it is highlighted that the stability of the optical properties of CDs is an important aspect that has received very little attention. While CDs are usually considered to be photostable, several recent reports show they are prone to photobleaching. Studies of blinking, photobleaching, and photoswitching of CDs are reviewed here. It is noted that there is a lack of systematic studies about the photostability of CDs, and efforts are needed to further study this aspect. Furthermore, it is observed that the stability of CDs is somewhat related to their photoluminescence quantum yield, excitation dependence of PL emission, precursor, and synthesis method used to produce CDs.  相似文献   
12.
王早  张国峰  李斌  陈瑞云  秦成兵  肖连团  贾锁堂 《物理学报》2015,64(24):247803-247803
利用N型半导体纳米材料氧化铟锡(ITO)作为单CdSe/ZnS量子点的基质来抑制单量子点的荧光闪烁特性. 实验采用激光扫描共聚焦显微成像系统测量了单量子点荧光的亮、暗态持续时间的概率密度分布的指数截止的幂律特性, 并与直接吸附在SiO2玻片上的单CdSe/ZnS量子点的荧光特性进行比较. 研究发现处于ITO中的单量子点比SiO2玻片上的单量子点荧光亮态持续时间提高两个数量级, 掺杂于ITO中的单量子点的荧光寿命约减小为SiO2玻片上的单量子点的荧光寿命的41%, 并且寿命分布宽度变小50%.  相似文献   
13.
Two‐dimensional (2D) lead‐free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in‐depth understanding on their shape‐controlled charge‐carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single‐particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution‐based method. We applied fluorescence microscopy and super‐resolution optical imaging at single‐particle level to investigate their morphology‐dependent PL properties. Narrow emission line widths and passivation of non‐radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super‐resolution optical image of the NS from localization‐based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   
14.
Super‐resolution fluorescence microscopy has enabled important breakthroughs in biology and materials science. Implementations such as single‐molecule localization microscopy (SMLM) and minimal emission fluxes (MINFLUX) microscopy in the localization mode exploit fluorophores that blink, i.e., switch on and off, stochastically. Here, we introduce nanographenes, namely large polycyclic aromatic hydrocarbons that can also be regarded as atomically precise graphene quantum dots, as a new class of fluorophores for super‐resolution fluorescence microscopy. Nanographenes exhibit outstanding photophysical properties: intrinsic blinking even in air, excellent fluorescence recovery, and stability over several months. As a proof of concept for super‐resolution applications, we use nanographenes in SMLM to generate 3D super‐resolution images of silica nanocracks. Our findings open the door for the widespread application of nanographenes in super‐resolution fluorescence microscopy.  相似文献   
15.
We show experimentally that the photoluminescence intermittency (blinking) of single CdSe quantum dots (QDs) is influenced by the dielectric properties of the embedding environment (matrix), the type of ligands and the capping shell. For the on‐times, we observe (and tentatively explain) a strong deviation from the commonly reported inverse power law behaviour, which can be taken into account by an exponential cut‐off at long times. We assign this component to the photoejection of the electron, while the power law behaviour is a combination of hole‐ and electron‐trapping processes. The cut‐off times and their distributions depend strongly on the polarity of the environment. Also, the off‐times show, though on a much longer timescale, deviations from the inverse power laws. We suggest a model including surface states and self‐trapped states, which quantitatively explains the experimental observations.  相似文献   
16.
Surface‐enhanced Raman scattering (SERS) spectra of hydrogenated amorphous carbon (a C:H) deposited on silver substrates have been recorded with a confocal Raman microscope. When scattered radiation is collected during a short time from an area of a few square micrometres, the subsequently measured SERS spectra often exhibit strong temporal changes (fluctuations). In this paper we present examples of spectra for which the intensity maxima of the fluctuating narrow Raman bands are significantly higher than that of the background (the background is usually dominated by two broad Raman bands centred at about 1350 and 1590 cm−1). In a series of successively measured spectra, one can find spectra with noticeably different total integral intensity. This suggests that the results of averaging the spectra revealing strong and weak fluctuations may be different (at least in intensity). The influence of some electrolytes on the SERS spectral fluctuations is also analysed. Our experiments revealed that the efficiencies of quenching of the SERS spectral fluctuations by various electrolytes are significantly different. We suggest that only anions directly interacting with the metal surface quench strong SERS fluctuations, and that the large differences between chloride and perchloride solutions are caused by differences in the strength of interaction of Cl and ClO4 anions with the silver surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
17.
18.
In this study, inorganic cesium lead iodide (CsPbI3) perovskite nanoparticles (PNPs) and perovskite nanowires (PNWs) with single‐layer graphene (SLG) are combined to obtain 0D–2D PNP–SLG and 1D–2D PNW–SLG hybrids with improved light harvesting. Time‐resolved single‐nanostructure photoluminescence studies of PNPs, PNWs, and related hybrids reveal (i) quasi‐two‐state photoluminescence blinking in PNPs, (ii) highly polarized photoluminescence emitted by PNWs and (iii) efficient interfacial electron transfer between perovskite nanostructures and SLG in both PNP–SLG and PNW–SLG hybrids. Doping of poorly absorbing, highly conductive SLG with perovskite nanocrystals and nanowires provides a simple, yet efficient path to obtain hybrids with increased light‐harvesting properties for potential utilization in the next‐generation photodetectors and photovoltaic devices, including polarization sensitive photodetectors.  相似文献   
19.
Intersystem crossing to the long-lived metastable triplet state is often a strong limitation on fluorescence brightness of single molecules, particularly for perylene in various matrices. In this paper, we report on a strong excitation-induced reverse intersystem crossing (rISC), a process where single perylene molecules in a dibenzothiophene matrix recover faster from the triplet state, turning into bright emitters at saturated excitation powers. With a detailed study of single-molecule fluorescence autocorrelations, we quantify the effect of rISC. The intrinsic lifetimes found for the two effective triplet states (8.5±0.4 ms and 64±12 ms) become significantly shorter, into the sub-millisecond range, as the excitation power increases and fluorescence brightness is ultimately enhanced at least fourfold. Our results are relevant for the understanding of triplet state manipulation of single-molecule quantum emitters and for markedly improving their brightness.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号