首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2753篇
  免费   227篇
  国内免费   277篇
化学   2729篇
晶体学   16篇
力学   72篇
综合类   11篇
数学   20篇
物理学   409篇
  2024年   5篇
  2023年   18篇
  2022年   46篇
  2021年   65篇
  2020年   70篇
  2019年   76篇
  2018年   78篇
  2017年   105篇
  2016年   136篇
  2015年   123篇
  2014年   132篇
  2013年   340篇
  2012年   134篇
  2011年   159篇
  2010年   143篇
  2009年   173篇
  2008年   206篇
  2007年   181篇
  2006年   171篇
  2005年   183篇
  2004年   139篇
  2003年   120篇
  2002年   66篇
  2001年   48篇
  2000年   34篇
  1999年   37篇
  1998年   39篇
  1997年   28篇
  1996年   36篇
  1995年   39篇
  1994年   40篇
  1993年   21篇
  1992年   20篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有3257条查询结果,搜索用时 15 毫秒
31.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   
32.
Small‐angle light scattering (SALS) measurements were used to study the structure of titanium dioxide (TiO2)/low‐density polyethylene (LDPE) nanocomposites. The results showed that the scattering from LDPE crystalline structures and the scattering from TiO2 nanoparticles can be resolved and separated. It is shown that the independent effects of crystallization conditions and the presence of nanoparticle aggregates on the spherulitic structure of the LDPE matrix can be determined by analyzing the scattering patterns using the methods proposed. From the SALS results, we conclude that the nanoparticle surface chemistry affects both nucleation of spherulites and their structure particularly under rapid cooling conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1084–1095, 2006  相似文献   
33.
The dynamic viscoelastic response of the two-phase polymer blend systems shows the characteristics of the thermorheologically complex materials. In this paper theoretical equations for describing the dynamic viscoelastic response of such polymer blend systems have been established by means of the mechanical modeling technique. The dynamic viscoelastic response of the blend systems at any blend composition can be predicted theoretically by using the equations established, provided that the dynamic viscoelastic response of the two pure components and the mechanical model parameters are known in advance. Thus, we provide an effective method for studying the dynamic mechanical properties and the molecular relaxation characteristics of the two-phase polymer blend systems.  相似文献   
34.
Water‐soluble low molecular weight chitosan of nanometer level and its copper complexes were prepared, and characterized by IR spectra, elemental analysis and gel permeation chromatography (GPC). The modes and mechanism of these copper complexes interaction with DNA were studied by a fluorescent probe method and electrophoresis analysis. It is suggested that there are electrostatic and intercalation modes of copper complexes interacting with DNA. At first, the cationic complex electrostaticly binds to the negatively charged phosphate backbone of DNA, and then a portion of the complex intercalates between the base pairs on the DNA duplex strand. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
35.
壳聚糖-聚羟基丁酸酯共混膜的制备与性质   总被引:1,自引:0,他引:1  
以乙酸为共溶剂,制备了壳聚糖-聚羟基丁酸酯(CTS-PHB)共混膜,利用红外光谱(FT-IR)、广角X粉末衍射(WAXD)、扫描电镜(SEM)及差热分析(DTA)表征了共混膜的化学组成、晶形、形貌和热稳定性能。研究表明:CTS和PHB可在体积百分数为62.5%的乙酸溶液中共混,形成表面光滑、不透明的膜,干态共混膜具备一定的力学强度。各比例的CTS-PHB共混膜有相同的热分解温度,共混膜的形貌特征随两组分质量配比变化,其中mPHB/mCTS=1/1的共混膜显示出良好的有序结构。  相似文献   
36.
Results of emanation thermal analysis (ETA) characterizing microstructure changes of SiC based materials during heat treatment in argon are demonstrated. This method made it possible to reveal fine changes of the texture of SiC nano-sized powders, SiC micro-sized powders and SiC whiskers under in situconditions of the heating. ETA curves can serve as fingerprints of the respective samples.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
37.
38.
Exfoliated graphite has been synthesized by first synthesizing H2SO4 intercalated compound in a H2O2‐H2SO4 mixture, followed by exfoliation under microwave irradiation. Poly(arylene disulfide)/graphite nanocomposites were then fabricated by absorbing cyclic(arylene disulfide) oligomers into the pores of exfoliated graphite. Subsequently, the nanocomposite precursor was subjected to heat treatment to carry out the in situ ring‐opening polymerization of the oligomers via free radical mechanism. The as‐prepared nanocomposite exhibited a exfoliated nanostructure as evidenced by transmission electron microscopy (TEM) observation. The nanocomposite with a very small amount of graphite, 5 wt%, possesses a highly electrical conductivity of 4 S/cm, therefore, many applications can be found as conductive materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
39.
弹性体型聚氨酯和聚碳酸酯共混物的形态结构   总被引:1,自引:0,他引:1  
阎荣江  李光 《应用化学》1994,11(3):62-65
用DSC、WAXD和SAXS研究了溶液共混的弹性体型聚氨酯(PU)/聚碳酸酯(PC)共混物的结构。结果表明,PU/PC为部分相容体系;共混过程中,溶剂DMF的诱导作用使PC形成结晶,其长周期与PU硬段形成微相的长周期相近  相似文献   
40.
The thermal and mechanical properties of collagen/chitosan blends before and after UV irradiation have been investigated using thermal analysis and mechanical (Instron) techniques. Comparisons were made with the thermal and mechanical properties of both collagen and chitosan films. Air-dried collagen, chitosan and collagen/chitosan films were exposed to UV irradiation (wavelength 254 nm) for different time intervals. Thermal properties of collagen/chitosan blends depend on the composition of the blend and are not significantly altered by UV irradiation.Mechanical properties such as ultimate tensile strength and ultimate percentage of elongation were much better for collagen films than for collagen/chitosan films. The results have shown that the mechanical properties of the blends were greatly affected by the duration of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the blend. Increasing UV irradiation leads to an increase in Young's modulus of the collagen/chitosan blend.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号