首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2753篇
  免费   227篇
  国内免费   277篇
化学   2729篇
晶体学   16篇
力学   72篇
综合类   11篇
数学   20篇
物理学   409篇
  2024年   5篇
  2023年   18篇
  2022年   46篇
  2021年   65篇
  2020年   70篇
  2019年   76篇
  2018年   78篇
  2017年   105篇
  2016年   136篇
  2015年   123篇
  2014年   132篇
  2013年   340篇
  2012年   134篇
  2011年   159篇
  2010年   143篇
  2009年   173篇
  2008年   206篇
  2007年   181篇
  2006年   171篇
  2005年   183篇
  2004年   139篇
  2003年   120篇
  2002年   66篇
  2001年   48篇
  2000年   34篇
  1999年   37篇
  1998年   39篇
  1997年   28篇
  1996年   36篇
  1995年   39篇
  1994年   40篇
  1993年   21篇
  1992年   20篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有3257条查询结果,搜索用时 15 毫秒
21.
A commercially available aliphatic thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly(tetramethylene oxide) soft segment and chain‐extended with 1,4‐butanediol was dissolved in dimethylformamide and mixed with dispersed single‐walled carbon nanotubes. The properties of composites made with unfunctionalized nanotubes were compared with the properties of composites made with nanotubes functionalized to contain hydroxyl groups. Functionalization almost eliminated the conductivity of the tubes according to the conductivity of the composites above the percolation threshold. In most cases, functionalized and unfunctionalized tubes yielded composites with statistically identical mechanical properties. However, composites made with functionalized tubes did have a slightly higher modulus in the rubbery plateau region at higher nanotube fractions. Small‐angle X‐ray scattering patterns indicated that the dispersion reached a plateau in the unfunctionalized composites that was consistent with the plateau in the rubbery plateau region. The room‐temperature modulus and tensile strength increase was proportionally higher than almost all increases seen previously in thermoplastic polyurethanes; however, the increase was still an order of magnitude below what has been reported for the best nanotube–polymer systems. Nanotube addition increased the hard‐segment glass transition temperature slightly, whereas the soft‐segment glass transition was so diffuse that no conclusions could be drawn. Unfunctionalized tubes suppressed the crystallization of the hard segment; whereas functionalized tubes had no effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 490–501, 2007  相似文献   
22.
A novel epoxy system was developed through the in situ curing of bisphenol A type epoxy and 4,4′‐diaminodiphenylmethane with the sol–gel reaction of a phosphorus‐containing trimethoxysilane (DOPO–GPTMS), which was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with 3‐glycidoxypropyltrimethoxysilane (GPTMS). The preparation of DOPO–GPTMS was confirmed with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. The resulting organic–inorganic hybrid epoxy resins exhibited a high glass‐transition temperature (167 °C), good thermal stability over 320 °C, and a high limited oxygen index of 28.5. The synergism of phosphorus and silicon on flame retardance was observed. Moreover, the kinetics of the thermal oxidative degradation of the hybrid epoxy resins were studied. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2354–2367, 2003  相似文献   
23.
Results of multinuclear MAS NMR spectroscopy are reported for poly (ε‐caprolactone)/maghnite nanocomposite formation, with ε‐caprolactone in situ polymerized in the presence of maghnite, a proton exchanged montmorillonite clay. Exfoliated and intercalated materials with different maghnite loading in the range 3–15 wt % were investigated. 1H NMR evidences Brønsted acid hydroxyl groups in the silicate layers and shows that their broad signal at 7.6 ppm present in the parent clay disappears in the nanocomposite material. 27Al MAS NMR results show that beside the hexacoordinated aluminum signal, two additional peaks corresponding to two different tetrahedral Al sites are present in the clay framework. The NMR signal intensity of only one of them was found to be affected in the nanocomposites compared with the parent maghnite, suggesting that these specific aluminum sites are the reactive ones at the initial stages of the polymerization. However almost no changes occurred in the 29Si NMR spectra, confirming that the polymer grafting, as indicated earlier by atomic force microscopy, took place on the aluminum tetracoordinated sites rather than on the silicon sites. A mechanism of maghnite surface catalyzed polymerization of ε‐caprolactone was proposed, involving Brønsted and Lewis acid sites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3060–3068, 2007  相似文献   
24.
The luminescence of the terpyridine-Eu3+-complex associated with poly(ethyleneoxide) or poly(propyleneoxide) chains has been studied in various fluid or solid environments including silica/poly(alkyleneoxide) nanocomposite materials. Strongly luminescent materials are obtained. Their emission can be tuned by varying the organic/inorganic content and, generally, the structure of the host material. In this respect, the complex luminescence itself is a sensor of the structural aspects of the host material.  相似文献   
25.
Nematic solutions of PPTA and nylon 3T were prepared in H2SO4 Optical microscopy was used to ascertain the phase behaviour of the blends. In the studied concentration range, no phase separation was observed. The solutions were shear-oriented and coagulated, and the resulting samples were studied by x-ray and electron diffraction. Nylon 3T crystallised even at a low concentration, which is indicative of a phase separation. Electron diffraction investigations of the oriented samples showed that well-oriented areas, which were predominantly composed of PPTA, adjoined areas where the major component, nylon 3T, showed no orientation. The relative proportion of the unoriented areas increased with increasing nylon concentration. It was concluded that, upon coagulation, the nylon was segregated into separate phases and crystallised unoriented, whereas for PPTA, crystallisation proceeded with very little chain rearrangement therefore preserving the orientation.  相似文献   
26.
Various phase behavior of blends of poly(vinyl ether)s with homologous acrylic polymers (polymethacrylates or polyacrylates) were examined using differential scanning calorimetry, optical microscopy (OM), and Fourier‐transformed infrared spectroscopy. Effects of varying the pendant groups of either of constituent polymers on the phase behavior of the blends were analyzed. A series of interestingly different phase behavior in the blends has been revealed in that as the pendant group in the acrylic polymer series gets longer, polymethacrylate/poly(vinyl methyl ether) (PVME) blends exhibit immiscibility, upper critical solution temperature (UCST), and miscibility, respectively. This study found that the true phase behavior of poly(propyl methacrylate)/PVME [and poly(isopropyl methacrylate)/PVME)] blend systems, though immiscible at ambient, actually displayed a rare UCST upon heating to higher temperatures. Similarly, as the methyl pendant group in PVE is lengthened to ethyl (i.e., PVME replaced by PVEE), phase behavior of its blends with series of polymethacrylates or polyacrylates changes correspondingly. Analyses and quantitative comparisons on four series of blends of PVE/acrylic polymer were performed to thoroughly understand the effects of pendant groups in either polyethers (PVE's) or acrylic polymers on the phase behavior of the blends of these two constituents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1521–1534, 2007  相似文献   
27.
28.
Supramolecular nanotube hosts with precisely controlled inner or outer diameters have been synthesized by self-assembly of unsymmetrical bolaamphiphilic monomers or glucopyranosylamide lipids, respectively. Time-resolved fluorescent measurement using 8-anilinonaphthalene-1-sulfonate (ANS) as a probe revealed that the water confined in a cardanyl-β-D -glucopyranoside lipid nanotube has relatively lower solvent polarity corresponding to that of propanol than bulk water. Extensively developed hydrogen bond networks also characterize the confined water in comparison to the case in bulk water. Encapsulation ability of the glucopyranosylamide lipid nanotube has been examined by filling the lyophilized LNTs with gold or silver nanoparticles, ferritin, or magnetic crystals. Filling the unsymmetrical bolaamphiphile nanotube possessing positively charged inner surfaces with negatively charged polymer beads or ferritin proved to be successful without depending on capillary action. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5137–5152, 2006  相似文献   
29.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006  相似文献   
30.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号