首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2736篇
  免费   225篇
  国内免费   279篇
化学   2713篇
晶体学   16篇
力学   72篇
综合类   11篇
数学   20篇
物理学   408篇
  2024年   4篇
  2023年   17篇
  2022年   32篇
  2021年   65篇
  2020年   70篇
  2019年   76篇
  2018年   78篇
  2017年   105篇
  2016年   136篇
  2015年   122篇
  2014年   132篇
  2013年   340篇
  2012年   134篇
  2011年   159篇
  2010年   143篇
  2009年   173篇
  2008年   206篇
  2007年   181篇
  2006年   171篇
  2005年   183篇
  2004年   139篇
  2003年   120篇
  2002年   66篇
  2001年   48篇
  2000年   34篇
  1999年   37篇
  1998年   39篇
  1997年   28篇
  1996年   36篇
  1995年   39篇
  1994年   40篇
  1993年   21篇
  1992年   20篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有3240条查询结果,搜索用时 46 毫秒
11.
The results of experimental investigation into the mechanical properties of blends of low-density polyethylene (LDPE) with chlorinated polyethylene (CPE) in tension are presented. The specimens of pure LDPE, CPE, and nine types of LDPE/CPE blends, with different content of components at 10 wt.% intervals, were examined. Data on the influence of blend composition on the tensile stress-strain diagram, elastic modulus, yield stress, breaking stress, and ultimate elongation are obtained. The results of investigations of creep are also reported. It is found that the creep compliance (the total current compliance minus the elastic compliance) obeys the power law of creep.__________Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 3, pp. 391–404, May–June, 2005.  相似文献   
12.
Nanocomposites (NC) were formed using cationic poly(L ‐lysine) (PLL), a semicrystalline polypeptide, that was reinforced by sodium montmorillonite (MMT) clay via solution intercalation technique. By varying solution conditions such as pH, temperature, and polypeptide concentration in the presence of clay platelets, the secondary structure of PLL was controllably altered into α‐helical, β‐sheet, and random coil. The high molecular weight polypeptide shows a strong propensity to fold into the β‐sheet structure when cast as films, irrespective of the initial secondary structure in solution. Nanocomposite local morphology confirms intercalated MMT platelets with PLL over a wide range of compositions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 239–252, 2007.  相似文献   
13.
ε‐caprolactone was polymerized in the presence of neat montmorillonite or organomontmorillonites to obtain a variety of poly(ε‐caprolactone) (PCL)‐based systems loaded with 10 wt % of the silicates. The materials were thoroughly investigated by different X‐ray scattering techniques to determine factors affecting structure of the systems. For one of the nanocomposites it was found that varying the temperature in the range corresponding to crystallization of PCL causes reversible changes in the interlayer distance of the organoclay. Extensive experimental and literature studies on this phenomenon provided clues indicating that this effect might be a result of two‐dimensional ordering of PCL chains inside the galleries of the silicate. Small angle X‐ray scattering and wide angle X‐ray scattering investigation of filaments oriented above melting point of PCL revealed that polymer lamellae were oriented perpendicularly to particles of unmodified silicate, while in PCL/organoclay systems they were found parallel to clay tactoids. Calorimetric and microscopic studies shown that clay particles are effective nucleating agents. In the nanocomposites, PCL crystallized 20‐fold faster than in the neat polymer. The crystallization rate in nanocomposites was also significantly higher than in microcomposite. Further research provided an insight how the presence of the filler affects crystalline fraction and spherulitic structure of the polymer matrix in the investigated systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2350–2367, 2007  相似文献   
14.
Poly(3‐hydroxybutyrate) (PHB)/layered double hydroxides (LDHs) nanocomposites were prepared by mixing PHB and poly(ethylene glycol) phosphonates (PEOPAs)‐modified LDH (PMLDH) in chloroform solution. Both X‐ray diffraction data and TEM micrographs of PHB/PMLDH nanocomposites indicate that the PMLDHs are randomly dispersed and exfoliated into the PHB matrix. In this study, the effect of PMLDH on the isothermal crystallization behavior of PHB was investigated using a differential scanning calorimeter (DSC) and polarized optical microscopy. Isothermal crystallization results of PHB/PMLDH nanocomposites show that the addition of 2 wt % PMLDH into PHB induced more heterogeneous nucleation in the crystallization significantly increasing the crystallization rate and reducing their activation energy. By adding more PMLDH into the PHB probably causes more steric hindrance of the diffusion of PHB, reducing the transportation ability of polymer chains during crystallization, thus increasing the activation energy. The correlation among crystallization kinetics, melting behavior and crystalline structure of PHB/PMLDH nanocomposites can also be discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3337–3347, 2006  相似文献   
15.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   
16.
For rough heterogeneous samples, the contrast observed in XPS images may result from both changes in elemental or chemical composition and sample topography. Background image acquisition and subtraction are frequently utilized to minimize topographical effects so that images represent concentration variations in the sample. This procedure may significantly increase the data acquisition time. Multivariate statistical methods can assist in resolving topographical and chemical information from multispectral XPS images. Principal component analysis (PCA) is one method for identification of the highest correlation/variation between the images. Topography, which is common to all of the images, will be resolved in the first most significant component. The score of this component contains spatial information about the topography of the surface, whereas the loading is a quantitative representation of the topography contribution to each elemental/chemical image. The simple‐to‐use self‐modelling mixture analysis (Simplisma) method is a pure variable method that searches for the source of most differences in the data and therefore has the potential to distinguish between chemical and topographical phases in images. The mathematical background correction scheme is developed and validated by comparing results to the experimental background correction for samples with differing degrees of topography. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
17.
Nanoparticles can influence the properties of polymer materials by a variety of mechanisms. With fullerene, carbon nanotube, and clay or graphene sheet nanocomposites in mind, we investigate how particle shape influences the melt shear viscosity η and the tensile strength τ, which we determine via molecular dynamics simulations. Our simulations of compact (icosahedral), tube or rod‐like, and sheet‐like model nanoparticles, all at a volume fraction ? ≈ 0.05, indicate an order of magnitude increase in the viscosity η relative to the pure melt. This finding evidently can not be explained by continuum hydrodynamics and we provide evidence that the η increase in our model nanocomposites has its origin in chain bridging between the nanoparticles. We find that this increase is the largest for the rod‐like nanoparticles and least for the sheet‐like nanoparticles. Curiously, the enhancements of η and τ exhibit opposite trends with increasing chain length N and with particle shape anisotropy. Evidently, the concept of bridging chains alone cannot account for the increase in τ and we suggest that the deformability or flexibility of the sheet nanoparticles contributes to nanocomposite strength and toughness by reducing the relative value of the Poisson ratio of the composite. The molecular dynamics simulations in the present work focus on the reference case where the modification of the melt structure associated with glass‐formation and entanglement interactions should not be an issue. Since many applications require good particle dispersion, we also focus on the case where the polymer‐particle interactions favor nanoparticle dispersion. Our simulations point to a substantial contribution of nanoparticle shape to both mechanical and processing properties of polymer nanocomposites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1882–1897, 2007  相似文献   
18.
海藻酸钠/大豆蛋白共混凝胶微球的结构   总被引:4,自引:1,他引:3  
利用钙离子交联海藻酸钠/大豆分离蛋白共混溶液,制得海藻酸钠/大豆分离蛋共混凝胶微球.结果表明,海藻酸钠和大豆分离蛋白质量配比的不同以及各组分间相互作用的变化,微球呈现不同的微观结构.将微球干燥后置于水中溶胀,微球的尺寸无法回复到干燥前的尺寸,这是由于真空干燥处理使水分子挥发,促进微球内组分间形成了强的氢键作用所致.此外,用碱处理该共混微球,发现由于大豆分离蛋白溶解以及部分钙离子被置换析出,微球塌陷且内部形成了大孔.  相似文献   
19.
The physical structure and compatibility of solution-cast Antheraea pernyi/Bombyx mori silk fibroin blend films were stuided by differential scanning calorimetry (DSC), thermomechanical (TMA) and thermogravimetric (TGA) analysis, dynamic viscoelastic measurement, infrared spectroscopy, and x-ray diffractometry. The DSC curves of the blend films showed independent endotherms at 280 and 358°C, corresponding to the thermal decomposition of B. mori and A. pernyi silk fibroins with random coil conformation. The intensity was roughly proportionate to the amount of each component in the blend. The thermal behavior corresponding to the conformational transitions induced by heating on A. pernyi and B. mori silk fibroins overlapped in the temperature range 190–230°C. Thermal expansion and contraction properties, as well as weight retention behavior of the blend films were intermediate between the pure components, as shown by the TMA and TGA curves. The onset temperature of the storage modulus curve decreased markedly, approaching that of B. mori silk fibroin film when the amount of this component in the blend increased. The loss modulus curve of the blend films showed two peaks at ca. 190 and 210°C, the former corresponding to B. mori, and the latter to A. pernyi silk fibroin. Infrared spectra of the blends exhibited absorption bands characteristic of the pure components overlapping in the spectral region 2000–400 cm?1. The x-ray diffraction peaks at 23 and 21.5°, attributed to the crystalline spacings of A. pernyi and B. mori fibroins, respectively, overlapped in the diffraction curves of the blends, while the peak at 11.4°, of A. pernyi, increased as the content of this fibroin in the blend increased. The degree of crystallinity, calculated from the x-ray diffraction curves, diminished as the amount of B. mori silk fibroin decreased. A low degree of compatibility exists between the two fibroins when they are cast from aqueous solution in the experimental conditions adopted in this work. © 1994 John Wiley & Sons, Inc.  相似文献   
20.
In this article, the linear and nonlinear shear rheological behaviors of polylactide (PLA)/clay (organophilic‐montmorillonite) nanocomposites (PLACNs) were investigated by an Advanced Rheology Expanded System rheometer. The nanocomposites were prepared by master batch method using a twin‐screw extruder with poly(ε‐caprolactone) (PCL) as a compatibilizer. The presence of org‐MMT leads to obvious pseudo‐solid‐like behaviors of nanocomposite melts. The behaviors caused by the formation of a “percolating network” derived from the reciprocity among the strong related sheet particles. Therefore, the storage moduli, loss moduli, and dynamic viscosities of PLACNs show a monotonic increase with MMT content. Nonterminal behaviors exists in PLACNs nanocomposites. Besides the PLACNs melts show a greater shear thinning tendency than pure PLA melt because of the preferential orientation of the MMT layers. Therefore, PLACNs have higher moduli but better processibility compared with pure PLA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3189–3196, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号