首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   11篇
  国内免费   6篇
化学   110篇
综合类   2篇
物理学   4篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1982年   1篇
排序方式: 共有116条查询结果,搜索用时 333 毫秒
111.
A new theranostic strategy is described. It is based on the use of an “all in one” prodrug, namely the biotinylated piperazine‐rhodol conjugate 4 a . This conjugate, which incorporates the anticancer drug SN‐38, undergoes self‐immolative cleavage when exposed to biological thiols. This leads to the tumor‐targeted release of the active SN‐38 payload along with fluorophore 1 a . This release is made selective as the result of the biotin functionality. Fluorophore 1 a is 32‐fold more fluorescent than prodrug 4 a . It permits the delivery and release of the SN‐38 payload to be monitored easily in vitro and in vivo, as inferred from cell studies and ex vivo analyses of mice xenografts derived from HeLa cells, respectively. Prodrug 4 a also displays anticancer activity in the HeLa cell murine xenograft tumor model. On the basis of these findings we suggest that the present strategy, which combines within a single agent the key functions of targeting, release, imaging, and treatment, may have a role to play in cancer diagnosis and therapy.  相似文献   
112.
An alternative route to protein assembly at surfaces based on using the unique capabilities of biological materials for the spatially selective assembly of proteins is described. Specifically, the stimuli-responsive properties of aminopolysaccharide chitosan are combined with the molecular-recognition capabilities of biotin-streptavidin binding. Biotinylated chitosan retains its stimuli-responsive properties and is capable of electrodepositing at specific electrode addresses. Once deposited, it is capable of binding streptavidin, which can mediate the subsequent assembly of biotinylated proteins. Spatially selective protein assembly using biotinylated Protein A and fluorescently-labeled antibodies is demonstrated.  相似文献   
113.
NHS-biotin modification as a specific lysine probe coupled to mass spectrometry detection is increasingly used over the past years for assessing amino acid accessibility of proteins or complexes as an alternative when well-established methods are challenged. We present a strategy based on usage in parallel of three commercially available reagents (Sulfo-NHS-biotin, Sulfo-NHS-LC-biotin, and Sulfo-NHS-LC-LC-biotin) to efficiently assess the solvent accessibility of amino acids using MALDI-TOF mass spectrometry. The same qualitative pattern of reactivity was observed for these three reagents on the THUMPalpha protein at four reagent/polypeptide molar ratios (2 : 1, 6 : 1, 13 : 1, and 26 : 1). Peptide assignment of the detected ions gains in accuracy because of the triple redundancy due to specific increments of monoisotopic mass. These reagents are a good alternative to isotope labeling when using only a single MALDI-TOF mass spectrometer. We observed that hydroxyl groups of serine and tyrosine residues were also modified by these Sulfo-NHS-biotin reagents. The low amount of protein required and the method's simplicity make this procedure accessible and affordable in order to obtain topological information on proteins difficult to purify. This method was used to identify two lysine residues of the TrmG10 methyltransferase from Pyrococcus abyssi that were differentially reactive, modified in the protein but not in the tRNA-protein complex.  相似文献   
114.
《Analytical letters》2012,45(18):2961-2973
Abstract

A novel enzyme-linked aptamer assay is reported for the determination of aflatoxin B1 (AFB1). AFB1 can competitively bind with the immobilized biotin-aptamer and release biotin complementary DNA, leading to the gradual fading of the detection system color with increasing of AFB1 concentration. In the absence of AFB1, the biotinylated complementary DNA is not be released from the fixed aptamer. Therefore, the enzyme reaction occurs in the detection system. Under the optimized experimental conditions, the proposed method possessed a wide linear range for AFB1 from 1 to 80?ng/mL (R2 of 0.990) with a low detection limit of 0.36?ng/mL. The method was then applied to detect uncontaminated peanuts fortified with different concentrations of AFB1. The recovery values were from 82.60% to 94.43%, which indicated the proposed method may be used to detect AFB1 in food and has potential for the development of test kits.  相似文献   
115.
Diblock and multiblock copolymers composed of a poly(D,L-lactide) (PLA) or poly(trimethylene carbonate) (PTMC) core with a hydrophilic chain of poly(ethylene glycol) (PEG) were prepared. These copolymers, in which the core is connected to PEG through a polyfunctional molecule such as citric, mucic, or tartaric acid, may be used to form nanoparticles for drug delivery applications. Branched copolymers were prepared by direct amidation between the polyfunctional acid and methoxy PEGamine, followed by ring-opening polymerization of lactide or trimethyl carbonate to form the PLA and PTMC block copolymers. In addition, a complex multiblock copolymer of biotin-PEG-poly[lactic-co-(glycolic acid)] (PLGA) for application in an avidin-biotin system was prepared for possible design of nanospheres with targeting properties. Studies of drug release from polymeric systems containing multiblock copolymers and studies of polymer degradation were also performed.  相似文献   
116.
Core–shell microparticles that consist of poly(vinyl neodecanoate) (VND) crosslinked with poly(ethylene glycol dimethacrylate) (EGDMA) as the core and poly(ethylene glycol methacrylate) (PEGMA) ( = 360 or = 526 g · mol?1) as the shell have been synthesized using suspension polymerization by a conventional free radical polymerization process. Interfacial tension and stability tests show that PEGMA acts as an amphiphilic macromonomer and is located on the oil/water interface of the suspension system, thus forming an outer layer during the polymerization. Kinetic studies of the monomers' conversion of VND, EGDMA, and PEGMA have been carried out using 1H NMR spectroscopy. EGDMA and PEGMA were found to have faster reaction rates compared to VND. Moreover, scanning electron microscopy showed that the polymerization of these particles starts from the shell and finishes towards the core. Consequently, the resulting microsphere is found to have a multi‐layer structure. Biotin was covalently bound to the surface by the PEGMA hydroxy groups. Conjugation of biotin with streptavidin PE (phycoerythrin) was subsequently carried out. Confocal microscopy was used to confirm the presence of fluorescing streptavidin. The amount of avidin conjugated to the microspheres was calculated by the release of a 2‐(4‐hydroxyphenylazo)benzoic acid/avidin complex using UV/vis spectroscopy. One avidin molecule was found to occupy 7 nm2 on the surface of the microspheres.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号