首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1187篇
  免费   172篇
  国内免费   141篇
化学   1453篇
晶体学   8篇
力学   7篇
综合类   1篇
物理学   31篇
  2024年   2篇
  2023年   11篇
  2022年   29篇
  2021年   42篇
  2020年   84篇
  2019年   55篇
  2018年   54篇
  2017年   45篇
  2016年   82篇
  2015年   57篇
  2014年   86篇
  2013年   113篇
  2012年   118篇
  2011年   69篇
  2010年   54篇
  2009年   69篇
  2008年   61篇
  2007年   72篇
  2006年   51篇
  2005年   59篇
  2004年   49篇
  2003年   39篇
  2002年   53篇
  2001年   19篇
  2000年   13篇
  1999年   17篇
  1998年   12篇
  1997年   11篇
  1996年   15篇
  1995年   10篇
  1994年   11篇
  1993年   10篇
  1992年   8篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有1500条查询结果,搜索用时 15 毫秒
951.
Two unexpected one-dimensional coordination polymers, [Cu(PT)(H2O)Cl]n 1 and [Cu2(BPT)(ClO4)3(H2O)4]n·2nH2O 2 , of symmetrical triazine-based ligands were synthesized by Cu(II)-mediated hydrolysis of the 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine ( MBPT ) pincer ligand. The reaction of Cu(ClO4)2·6H2O with MBPT proceeded via hydrolysis of the methoxy group to produce the dicompartmental 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2(1H)-one ligand ( HBPT ) that then undergoes in situ complexation with Cu(II) to afford 2 . In case of CuCl2, the reaction proceeds further with C–N cleavage of one pyrazolyl unit leading to the formation of 6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4(1H,3H)-dione ligand ( HPT ) that also undergoes in situ complexation with Cu(II) affording 1 . The role of Cu(II) is to increase the Lewis acid reactivity of the water molecule where similar hydrolytic reactions for MBPT were observed in acidic medium in presence of an aqueous HCl (1:1 v/v) solution. The molecular and supramolecular structures of complexes 1 and 2 were investigated using X-ray diffraction of single crystal, Hirshfeld analysis, and density functional theory calculations. The Cl…H (11.7%) and O…H (24.7%) contacts are the most important in 1 , whereas the molecular packing of 2 is controlled mainly by the O…H (58.7%) hydrogen bonds. Complex 2 showed better activity against Escherichia coli, Bacillus subtilis, and Candida albicans compared with the standard antibiotics amoxicillin, tetracycline, and ampicillin. In general, complexes 1 and 2 showed good antimicrobial activity than these antibiotics and have the advantage to be used as both antibacterial and antifungal agents.  相似文献   
952.
Reaction of NacNacAl (NacNac=[DippNC(Me)CHC(Me)NDipp]) with one equivalent of benzophenone affords a ketylate species NacNacAl(η2(C,O)-OCPh2) that undergoes easy cyclization reactions with unsaturated substrates. The scope of substrates included benzophenone, aldimine (PhNC(Ph)H), quinoline, phenyl nitrile, trimethylsilyl azide, and a saturated cyclic thiourea. The latter substrate reacted by an unusual C−N cleavage that left the C=S functionality intact. The new products were characterized by NMR spectroscopy and X-ray diffraction analysis.  相似文献   
953.
We report here a method for in situ generation of various ruthenium carbonyl phosphine catalysts for arylation via cleavage of inert aromatic carbon–oxygen bonds. The use of catalyst systems consisting of [RuCl2(CO)(p-cymene)], CsF, styrene, and phosphines enabled facile screening of phosphine ligands. Asymmetric C–O arylation was also achieved for atropo-enantioselective biaryl synthesis using a chiral monodentate phosphine ligand.  相似文献   
954.
A bioorthogonal ligation and cleavage method via reactions of chloroquinoxalines (CQ) and ortho‐dithiophenols (DT) is presented. Double nucleophilic substitutions of ortho‐dithiophenols to chloroquinoxalines provide conjugates containing tetracyclic benzo[5,6][1,4]dithiino[2,3‐b]quinoxaline with strong built‐in fluorescence together with release of the other functional molecules. Three cleavable linkers were designed and successfully used in release of the molecules containing biotin from the protein conjugates. The CQ‐DT bioorthogonal reactions can be applied for the bioorthogonal ligations, bioorthogonal cleavages, and trans‐tagging of proteins, and show advantages of readily accessible unnatural orthogonal groups, appealing reaction kinetics (k2≈1.3 m ?1 s?1), excellent biocompatibility of orthogonal groups, and high stability of conjugates. This complements previous bioorthogonal reactions and is a new route for protein‐fishing applications and in‐gel fluorescence analysis.  相似文献   
955.
A new silver mediated aminophosphinoylation of propargyl alcohols with aromatic amines and Hphosphine oxides for the construction of a-aminophosphine oxides has been developed.The C-N and C-P bond could be efficiently formed in one pot operation via sequential C-C and C-O bond cleavage of propargylic alcohols.This present methodology,which not only provides a simple and alternative strategy for the synthesis of α-aminophosphine oxides,but also opens a new window for the cleavage reactions of propargyl alcohols via dealkynalation coupling.  相似文献   
956.
957.
RNA-RNA interactions are essential for biology, but they can be difficult to study due to their transient nature. While crosslinking strategies can in principle be used to trap such interactions, virtually all existing strategies for crosslinking are poorly reversible, chemically modifying the RNA and hindering molecular analysis. We describe a soluble crosslinker design (BINARI) that reacts with RNA through acylation. We show that it efficiently crosslinks noncovalent RNA complexes with mimimal sequence bias and establish that the crosslink can be reversed by phosphine reduction of azide trigger groups, thereby liberating the individual RNA components for further analysis. The utility of the new approach is demonstrated by reversible protection against nuclease degradation and trapping transient RNA complexes of E. coli DsrA-rpoS derived bulge-loop interactions, which underlines the potential of BINARI crosslinkers to probe RNA regulatory networks.  相似文献   
958.
The rate constants k for the cleavage of the carbon-halogen bond in anion radicals of 1- and 2-chloro-9,10-diphenylanthracene, 9,10-dichloroanthracene and 2-bromo-9,10-diphenylanthracene have been determined and compared with the literature data for other anthracenyl halides. There is no significant correlation between log k and the formal potentials of the anion radical formation. However, linear relationships of the experimental RT In k vs. the relative thermodynamic contribution to the activation barrier as well as the relative intrinsic activation energy (calculated on the basis of the recent Savéant model and using the ionic component of the bond enthalpy estimated from the absolute electronegativity and hardness) have been found.  相似文献   
959.
The targeted cleavage of the C−N bonds of alkyl primary amines in sustainable compounds of biomass according to a metal-free pathway and the conjunction of nitrogen in the synthesis of imidazo[1,5-a]pyridines are still highly challenging. Despite tremendous progress in the synthesis of imidazo[1,5-a]pyridines over the past decade, many of them can still not be efficiently prepared. Herein, we report an anomeric stereoauxiliary approach for the synthesis of a wide range of imidazo[1,5-a]pyridines after cleaving the C−N bond of d -glucosamine (α-2° amine) from biobased resources. This new approach expands the scope of readily accessible imidazo[1,5-a]pyridines relative to existing state-of-the-art methods. A key strategic advantage of this approach is that the α-anomer of d -glucosamine enables C−N bond cleavage via a seven-membered ring transition state. By using this novel method, a series of imidazo[1,5-a]pyridine derivatives (>80 examples) was synthesized from pyridine ketones (including para-dipyridine ketone) and aldehydes (including para-dialdehyde). Imidazo[1,5-a]pyridine derivatives containing diverse important deuterated C(sp2)−H and C(sp3)−H bonds were also efficiently achieved.  相似文献   
960.
The dissolution mechanism of oligosaccharides in N,N‐dimethylacetamide/lithium chloride (DMAc/LiCl), a solvent used for cellulose dissolution, and the capabilities of low‐energy collision‐induced dissociation (low‐energy CID), collision‐induced dissociation (CID), and higher energy collision dissociation (HCD) for structural analysis of carbohydrates were investigated. Comparing the spectra obtained using 3 techniques shows that, generally, when working with monolithiated sugars, CID spectra provide more structurally informative fragments, and glycosidic bond cleavage is the main pathway. However, when working with dilithiated sugars, HCD spectra can be more informative providing predominately cross‐ring cleavage fragments. This is because HCD is a nonresonant activation technique, and it allows a higher amount of energy to be deposited in a short time, giving access to more endothermic decomposition pathways as well as consecutive fragmentations. The difference in preferred dissociation pathways of monolithiated and dilithiated sugars indicates that the presence of the second lithium strongly influences the relative rate constants for cross‐ring cleavages vs glycosidic bond cleavages, and disfavors the latter. Regarding the dissolution mechanism of sugars in DMAc/LiCl, CID and HCD experiments on dilithiated and trilithiated sugars reveal that intensities of product ions containing 2 Li+ or 3 Li+, respectively, are higher than those bearing only 1 Li+. In addition, comparing the fragmentation spectra (both HCD and CID) of LiCl‐adducted lithiated sugar and NaCl‐adducted sodiated sugar shows that while, in the latter case, loss of NaCl is dominant, in the former case, loss of HCl occurs preferentially. The compiled evidence implies that there is a strong and direct interaction between lithium and the saccharide during the dissolution process in the DMAc/LiCl solvent system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号