首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   106篇
  国内免费   82篇
化学   698篇
晶体学   3篇
力学   11篇
综合类   1篇
物理学   10篇
  2024年   2篇
  2023年   12篇
  2022年   12篇
  2021年   21篇
  2020年   34篇
  2019年   28篇
  2018年   17篇
  2017年   24篇
  2016年   39篇
  2015年   40篇
  2014年   32篇
  2013年   58篇
  2012年   69篇
  2011年   38篇
  2010年   20篇
  2009年   42篇
  2008年   48篇
  2007年   30篇
  2006年   36篇
  2005年   25篇
  2004年   27篇
  2003年   27篇
  2002年   13篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   7篇
  1995年   4篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
排序方式: 共有723条查询结果,搜索用时 31 毫秒
711.
712.
A synthetic metalloporphine was immobilized onto a PVA-based and mercapto-grafted solid support, emulating the active site of cytochrome P450. Its ligninolytic peroxidase-like catalytic activity was studied. The coordinated mercapto ligand significantly affected the catalytic features of the catalyst because the oxidation of lignin-model compounds was very slow by comparison with imidazoleand pyridine-coordinated immobilized metalloporphines. Conversely, the catalyst efficiently bleached several industrial dyes and thus demonstrated promising activity for this application. Based on this altered substrate specificity the oxygen-donor catalytic route seems to be more favorable than a single electron oxidation pathway.  相似文献   
713.
714.
生物矿化中的无定形碳酸钙   总被引:2,自引:0,他引:2  
本文综述了无定形碳酸钙的结构、合成和表征方法,阐明了无定形碳酸钙是一种热力学上的不稳定相.具有功能基团的有机高分子、功能蛋白质以及无机镁离子等添加剂对它有一定的稳定作用,抑制它的转化;但是在一定条件下它将转化成结晶态的碳酸钙.无定形碳酸钙具有高可溶性、各向同性和可塑性,正是这些特性使得生物采用它作为生物矿物的前体来矿化,形成具有精美结构的各种生物矿物.通过对无定形碳酸钙的研究,能够更加深入地了解生物矿化的机理,更好地仿生合成和制备各种功能材料.  相似文献   
715.
Herein we designed a strategy for the synthesis of regioselective and stereoselective displacement of C-3 acetate group in the presence of other C-4 and C-6 acetate of 2-ketophenyl-glycal by different aromatic and cyclic aliphatic thiol nucleophiles taking inspiration from cytosolic esterase mediated thiolation of glucosamine sugars into cellular glycan. Under a mild base condition at room temperature, the protocol generated a library of 3-arylthiosugars with excellent yields and high axial selectivity. This stereoselective approach tolerated well with different ester-protected glycals and thiophenols, aliphatic cyclic thiols, and mercaptans. A variety of control experiments were conducted to establish the mechanism and reason behind the stereoselectivity.  相似文献   
716.
717.
Conductive hybrid xanthan gum (XG)–polyaniline (PANI) biocomposites forming 3D structures able to mimic electrical biological functions are synthesized by a strong-acid free medium. In situ aniline oxidative chemical polymerizations are performed in XG water dispersions to produce stable XG–PANI pseudoplastic fluids. XG–PANI composites with 3D architectures are obtained by subsequent freeze-drying processes. The morphological investigation highlights the formation of porous structures; UV–vis and Raman spectroscopy characterizations assess the chemical structure of the produced composites. I–V measurements evidence electrical conductivity of the samples, while electrochemical analyses point out their capability to respond to electric stimuli with electron and ion exchanges in physiological-like environment. Trial tests on prostate cancer cells evaluate biocompatibility of the XG–PANI composite. Obtained results demonstrate that a strong acid-free route produces an electrically conductive and electrochemically active XG–PANI polymer composite. The investigation of charge transport and transfer, as well as of biocompatibility properties of composite materials produced in aqueous environments, brings new perspective for exploitation of such materials in biomedical applications. In particular, the developed strategy can be used to realize biomaterials working as scaffolds that require electrical stimulations for inducing cell growth and communication or for biosignals monitoring and analysis.  相似文献   
718.
Unique chemical structures that are often characteristic of biologically active natural products are often created by oxidative cyclizations. Many of these reactions are catalysed by ‘non-canonical’ or ‘thwarted’ iron oxygenases that appear to involve long-lived radicals. This perspective summarizes our group‘s efforts to mimic these biosynthetic transformations for the synthesis of highly oxidized dibenzocyclooctadiene lignan natural products using redox neutral photocatalysis. We describe the evolution of this research program, which hinges on the use of Okada's redox active ester, and show how multiple factors control the fate of the resulting radicals.  相似文献   
719.
The meniscus plays a crucial role in loads distribution and protection of articular cartilage. Meniscal injury can result in cartilage degeneration, loss of mechanical stability in the knee joint and ultimately lead to arthritis. Surgical interventions provide only short-term pain relief but fail to repair or regenerate the injured meniscus. Emerging tissue engineering approaches based on 3D bioprinting provide alternatives to current surgical methods for meniscus repair. In this review, the current bioprinting techniques employed in developing engineered meniscus grafts are summarized and discuss the latest strategies for mimicking the gradient structure, composition, and viscoelastic properties of native meniscus. Recent progress is highlighted in gene-activated matrices for meniscus regeneration as well. Finally, a perspective is provided on the future development of 3D bioprinting for meniscus repair, emphasizing the potential of this technology to revolutionize meniscus regeneration and improve patient outcomes.  相似文献   
720.
For tissue engineering of skeletal muscles, there is a need for biomaterials which do not only allow cell attachment, proliferation, and differentiation, but also support the physiological conditions of the tissue. Next to the chemical nature and structure of the biomaterial, its response to the application of biophysical stimuli, such as mechanical deformation or application of electrical pulses, can impact in vitro tissue culture. In this study, gelatin methacryloyl (GelMA) is modified with hydrophilic 2-acryloxyethyltrimethylammonium chloride (AETA) and 3-sulfopropyl acrylate potassium (SPA) ionic comonomers to obtain a piezoionic hydrogel. Rheology, mass swelling, gel fraction, and mechanical characteristics are determined. The piezoionic properties of the SPA and AETA-modified GelMA are confirmed by a significant increase in ionic conductivity and an electrical response as a function of mechanical stress. Murine myoblasts display a viability of >95% after 1 week on the piezoionic hydrogels, confirming their biocompatibility. The GelMA modifications do not influence the fusion capacity of the seeded myoblasts or myotube width after myotube formation. These results describe a novel functionalization providing new possibilities to exploit piezo-effects in the tissue engineering field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号