首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   53篇
  国内免费   22篇
化学   928篇
晶体学   1篇
力学   7篇
综合类   2篇
数学   4篇
物理学   23篇
  2024年   1篇
  2023年   6篇
  2022年   17篇
  2021年   22篇
  2020年   14篇
  2019年   30篇
  2018年   18篇
  2017年   24篇
  2016年   38篇
  2015年   33篇
  2014年   37篇
  2013年   61篇
  2012年   46篇
  2011年   40篇
  2010年   54篇
  2009年   52篇
  2008年   74篇
  2007年   57篇
  2006年   51篇
  2005年   70篇
  2004年   59篇
  2003年   53篇
  2002年   42篇
  2001年   20篇
  2000年   7篇
  1999年   13篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1984年   1篇
排序方式: 共有965条查询结果,搜索用时 15 毫秒
821.
Three aluminum complexes supported by salen ligands derived from cis-1,2-cyclohexanediamine and salicylaldehyde derivatives were synthesized. They were characterized by 1H, 13C NMR spectra, and elemental analysis. X-ray diffraction analysis revealed that aluminum was in distorted square pyramidal geometry in 2. These complexes were employed as catalysts for the ring-opening polymerization (ROP) of L-lactide and rac-lactide. Complex 2 showed the highest activity among these complexes with isopropanol for the ROP of L-lactide and 3 showed the highest stereoselectivity for the ROP of rac-lactide attaining partially isotactic polylactide with a Pm of 0.75. The kinetic data of the polymerization utilizing 3 as catalyst showed that the polymeric rate was first order to the monomer and catalyst.  相似文献   
822.
The harmful Esca disease in vine plants caused by wood‐inhabiting fungi including Phaeomoniella chlamydospora (Pch) is spreading all across the world. This disease leads to poor vine crops and a slow decline or to a sudden dieback of the vine plants. The pruning wounds of vine plants are the main entry point for Pch. While model experiments with aerosol particles recommend electrospun nonwovens as a suitable barrier to block Pch, tests with living spores show clearly that only electrospun fibrous nonwovens do not prevent Pch invasion. However it is found, that with antifungal additives electrospun nonwovens could be applied successfully for blocking of Pch to infect the substrate. Thereby, a highly useful concept for the protection of vine plants against Esca disease is provided which could also serve as a concept for related plant diseases.

  相似文献   

823.
In the present work, silver nanoparticles were in situ-generated in cellulose matrix using Ocimum sanctum leaf extract as a reducing agent. Regenerated wet cellulose films were first immersed in O. sanctum leaf extract and then it was allowed to diffuse into the films. The leaf extract–diffused wet films were dipped in different concentrated aq.AgNO3 solutions. The leaf extract inside the wet films reduced AgNO3 into nanosilver. The dry composite films were black in color. Some of the nanoparticles were also formed outside the film in the solution. The nanoparticles were viewed by transmission electron microscopy and scanning electronic microscopy techniques. The composite films showed good antibacterial activity. The cellulose, matrix, and the composite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis techniques. The tensile properties of the composite films were higher than those of the matrix. These biodegradable films can be used for packaging and medical purposes.  相似文献   
824.
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.  相似文献   
825.
蓖麻油与乳酸的共聚物合成与表征   总被引:2,自引:1,他引:1  
用熔融聚合法合成了一种蓖麻油和乳酸的共聚物.以丁二酸酐作为共聚体系的引发剂和封端剂,制得端羧基共聚物P(LA-CO)-COOH.研究了反应条件对共聚物分子量的影响,通过核磁共振表征了共聚物的结构.DSC和TG研究表明,蓖麻油链段的引入破坏了聚乳酸的结晶性,提高了共聚物的热稳定性.  相似文献   
826.
Model protein bovine serum albumin (BSA) was covalently grafted onto poly[(L-lactide)-co-carbonate] microsphere surfaces by "click chemistry." The grafting was confirmed by confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The maximum amount of surface-grafted BSA was 45 mg x g(-1). The secondary structure of the grafted BSA was analyzed by FTIR and the results demonstrated that the grafting did not affect protein structure. This strategy can also be used on microspheres prepared from poly(L-lactide)/poly[(L-lactide)-co-carbonate] blend materials.  相似文献   
827.
Interactions between the anticancer drug quercetin and biodegradable polyesters within micelles were investigated by DSC, WAXD, and UV analyses. For micelles based on poly(ethylene glycol) methyl ether-block-poly(epsilon-caprolactone) (MPEG-PCL), DSC analysis indicated that the interactions were between the hydrophobic core and the drug within the micelle. For micelles based on poly(ethylene glycol) methyl ether-block-poly(L-lactide) (MPEG-PLLA), the interactions were between the hydrophobic core and the drug and between hydrophilic segments and the drug. WAXD results indicated that no crystalline phase of the drug was found in either of the micelle types. Based on the DSC and WAXD results, two probable micelle structures were proposed. The UV spectra revealed the presence of hydrogen bonding as the main interaction between the drug and the polyesters. In vitro studies demonstrated that quercetin release from micelles was sustained and was affected by the polymer-drug interaction.  相似文献   
828.
Polycarbonate is one of the most widely used engineering plastics because of its superior physical, chemical, and mechanical properties. Understanding the biodegradation of this polymer is of great importance to answer the increasing problems in waste management of this polymer. Aliphatic polycarbonates are known to biodegrade either through the action of pure enzymes or by bacterial whole cells. Very little information is available that deals with the biodegradation of aromatic polycarbonates. Biodegradation is governed by different factors that include polymer characteristics, type of organism, and nature of pretreatment. The polymer characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of functional groups and substituents present in its structure, and plasticizers or additives added to the polymer all play an important role in its degradation. The carbonate bond in aliphatic polycarbonates is facile and hence this polymer is easily biodegradable. On the other hand, bisphenol A polycarbonate contains benzene rings and quaternary carbon atoms which form bulky and stiff chains that enhance rigidity. Even though this polycarbonate is amorphous in nature because of considerable free volume, it is non-biodegradable since the carbonate bond is inaccessible to enzymes because of the presence of bulky phenyl groups on either side. In order to facilitate the biodegradation of polymers few pretreatment techniques which include photo-oxidation, gamma-irradiation, or use of chemicals have been tested. Addition of biosurfactants to improve the interaction between the polymer and the microorganisms, and blending with natural or synthetic polymers that degrade easily, can also enhance the biodegradation.  相似文献   
829.
Polyhydroxyalkanoates (PHAs) have attracted the attention of academia and industry because of their plastic-like properties and biodegradability. However, practical applications as a commodity material have not materialized because of their high production cost and unsatisfactory mechanical properties. PHAs are also believed to have high-value applications as an absorbable biomaterial for tissue engineering and drug-delivery devices because of their biocompatibility. However, research in these areas is still in its very early stages. The main problem faced by proponents of PHAs is the lack of a niche area where PHAs will be the most desired material in terms of its function during use rather than because of its eco-friendly virtues after use. Here, we report on the oil-absorbing property of PHA films and its potential applications. By comparing with some of the existing commercial products, the potential application of PHAs as cosmetic oil-blotting films is revealed for the first time. Besides having the ability to rapidly absorb and retain oil, PHA films also have a natural oil-indicator property, showing obvious changes in opacity following oil absorption. Surface analysis revealed that the surface structures such as porosity and smoothness exert great influence on the rapid oil-absorption properties of the PHA films. These newly discovered properties could be exploited to create a niche area for the practical applications of PHAs.  相似文献   
830.
Silylated graphite oxide (sGO) was selected as suitable filler to improve the mechanical and electrical conductive properties of poly(ε‐caprolactone) (PCL). The composites of PCL and sGO were prepared by solution blending method. By modifying the surface of GO with silylation reagent (octyltrichlorosilane), the interlayer space of graphite oxide (GO) was increased and an excellent dispersion of the modified GO in the organic solvent and into the PCL matrix was achieved. The structures and physical properties of the sGO/PCL composites were characterized by the fourier transform infrared (FTIR), thermogravimetric analysis (TGA), wide angle X‐ray diffraction (WAXD) analysis, differential scanning calorimeter (DSC), tensile tests, dynamic mechanical analysis (DMA), and volume resistivity measurements. It indicated that the PCL/sGO composites formed an exfoliated structure from the WAXD study. The tensile strength and Young′s modulus of PCL increased with the addition of sGO. It was also found that a small amount of the sGO platelets in the composite could act as a nucleating agent and accelerated the crystallization of PCL. Further, the addition of the sGO platelets into the PCL matrix increased the volume electrical conductivity of PCL. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 294–301, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号