首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12124篇
  免费   1399篇
  国内免费   442篇
化学   13220篇
晶体学   44篇
力学   130篇
综合类   10篇
数学   20篇
物理学   541篇
  2024年   24篇
  2023年   68篇
  2022年   175篇
  2021年   209篇
  2020年   407篇
  2019年   363篇
  2018年   308篇
  2017年   484篇
  2016年   707篇
  2015年   598篇
  2014年   620篇
  2013年   1018篇
  2012年   797篇
  2011年   763篇
  2010年   726篇
  2009年   800篇
  2008年   805篇
  2007年   785篇
  2006年   678篇
  2005年   635篇
  2004年   664篇
  2003年   492篇
  2002年   364篇
  2001年   199篇
  2000年   123篇
  1999年   150篇
  1998年   128篇
  1997年   135篇
  1996年   114篇
  1995年   100篇
  1994年   107篇
  1993年   107篇
  1992年   109篇
  1991年   46篇
  1990年   24篇
  1989年   23篇
  1988年   20篇
  1987年   15篇
  1986年   16篇
  1985年   10篇
  1984年   13篇
  1983年   5篇
  1982年   11篇
  1981年   7篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
972.
The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk‐like (thick film) Tg for these polymers is 103 ± 2 °C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 °C), centipede (40 °C), comb (9 °C), and 4 armed star (9 °C) PS for ≈ 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (≈2 GPa) whereas the centipede PS is most rigid (≈4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below ~40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
973.
Well‐defined mikto‐topology star polystyrene composed of one cyclic arm and four linear arms was synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu‐catalyzed azide‐alkyne cycloaddition (CuAAC) click reaction. First, the bromine‐alkyne α,ω‐linear polystyrenes containing four hydroxyl groups protected with acetone‐based ketal groups were synthesized by ATRP of styrene using a designed initiator. Then, the bromine end‐group was converted to the azide and the linear polystyrene was cyclized intra‐molecularly by the CuAAC reaction. The four hydroxyl groups were released by deprotection and then esterified with 2‐bromoisobutyryl bromide to produce a cyclic polymer bearing four ATRP initiating units. By subsequent ATRP of styrene to grow linear polymers with the cyclic polystyrene as a macroinitiator, the mikto‐topology star polymers were prepared. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
974.
Thermoresponsive poly(N‐vinylcaprolactam) nanocomposite hydrogels containing graphene were successfully prepared by frontal polymerization. High concentration of graphene (5.0 mg/mL) was obtained by direct graphite sonication in the self‐same liquid monomer, thus avoiding any chemical manipulation and obtaining “real” graphene as nanofiller instead of one of its more or less oxidized derivative, which is what generally reported in published reports. Furthermore, the corresponding nanocomposites were obtained without using any solvent to be eventually removed. The materials were fully characterized by RAMAN, SEM, and TEM, and their swelling behavior and rheological properties were investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
975.
A styrene‐based monomer having a five‐membered cyclic carbonate structure, 4‐vinylbenzyl 2,5‐dioxoran‐3‐ylmethyl ether (VBCE), was prepared by lithium bromide‐catalyzed addition of carbon dioxide to 4‐vinylbenxyl glycidyl ether (VBGE). Radical polymerization of the obtained VBCE was carried out using 2,2′‐azobisisobutyronitrile as an initiator. PolyVBCE with number‐averaged molecular weight higher than 13,800 was obtained by a solution polymerization in N,N‐dimethylformamide, N,N‐dimethylacetamide, dimethyl sulfoxide, and methyl ethyl ketone. The glass transition temperature and 5 wt % decomposition temperature of the polyVBCE were determined to be 52 and 305 °C by differential scanning calorimetry and thermal gravimetry analysis, respectively. It was confirmed that a polymer consisting of the same VBCE repeating unit can be also obtained via chemical modification of polyVBGE, that is, a lithium‐bromide‐catalyzed addition of carbon dioxide to a polyVBGE prepared from a radical polymerization of VBGE. Further copolymerization of VBCE with styrene gave the corresponding copolymer in a high yield. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
976.
A synthetic methodology is described for the preparation of core–shell nanogels by reversible addition‐fragmentation chain transfer. Well‐defined macro chain transfer agents (macro‐CTA's) were prepared in a first step using monomers that yield sensitive polymers. In the second step, a crosslinker alone or with the addition of a functionalized comonomer were used to form a crosslinked core. The ratio of crosslinker to macro‐CTA is crucial to yield nanogels. Furthermore, the polymerization time has an impact in the architecture of the nanomaterial obtained: it evolves from a core‐crosslinked star to a core–shell nanogel. Controlling the molecular weight of the macro‐CTA and the type of comonomer in the core forming step, core–shell nanogels with hydrodynamic diameters from 22 to 168 nm and a core that represents from 35 to 77% of the size, were prepared containing functional groups in the core which could be used as catalytic scaffolds. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   
977.
Highly toxic polyallylamine (PA) was reacted with a varying amount of a novel linker, 6‐(N,N,N′,N′‐tetramethylguanidinium chloride) hexanoic acid (Tmg‐HA), to prepare a series of tetramethylguanidinium‐PA (Tmg‐PA) polymers, which were used as vectors for gene transfection. The extent of attachment of the linker, Tmg‐HA, to the PA backbone was determined by 2,4,6‐trinitrobenzene sulfonic acid assay. The modified polymers (Tmg‐PAs), when complexed with pDNA, exhibited good condensation ability. The nanoparticles, so formed, were characterized by their size and zeta potential and were subsequently evaluated for their toxicity and transfection ability on various mammalian cells, viz., HeLa, CHO, and HEK 293 cells. Mobility shift assay revealed that on increasing the percent substitution of Tmg‐HA onto PA (from Tmg‐PA1 to Tmg‐PA6), relatively higher amounts of modified polymers were required to retard the mobility of a fixed amount of DNA. Besides, Tmg‐PA polymers provided sufficient protection (ca. 84–88%) to bound DNA against nucleases and one of the formulations, Tmg‐PA2 (ca. 15% substitution) displayed the highest transfection efficiency outcompeting the commercial transfection reagent, Lipofectamine? with minimal cytotoxicity. More impressively, the transfection efficiency increased despite recording a decrease in the buffering capacity of the grafted polymers suggesting that buffering capacity is not the sole parameter in determining the gene delivery efficiency of a vector system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
978.
A novel method for surface modification of UV‐cured epoxy network was described. Photoinitiated cationic copolymerization of a bisepoxide, namely 3,4‐epoxy cyclohexylmethyl 3,4‐epoxycyclohexanecarboxylate (EEC) with epibromohydrine (EBH) by using a cationic photoinitiator, [4‐(2‐methylpropyl)phenyl]4‐methylphenyl‐iodonium hexafluorophosphate, in propylene carbonate solution was studied. The real‐time Fourier transform infrared spectroscopic, gel content determination and thermal characterization studies revealed that both EEC and EBH monomers take part in the polymerization and epoxy network possessing bromomethyl functional groups was obtained. The bromine functions of the cured product formed on the glass surface were converted to azide functionalities with sodium azide. Independently prepared alkyne functional poly(ethylene glycol) (PEG) was subsequently anchored to azide‐modified epoxy surface by a “click” reaction. Surface modification of the network through incorporation of hydrophilic PEG chain was evidenced by contact angle measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2862–2868, 2010  相似文献   
979.
980.
High‐regioregular poly{3‐[6‐(1‐methylimidazolium‐3‐yl)hexyl]thiophene‐2,5‐diyl bromide}, PMHT‐Br, has been prepared by reaction of high‐regioregular (above 92%) poly[3‐(6‐bromohexyl)thiophene‐2,5‐diyl] with 1‐methylimidazole. PMHT‐Br is soluble in water and water miscible solvents such as methanol, DMSO and shows solvatochromism; λmax (nm): 423 (H2O); 435 (MeOH); 452 (DMSO). Increased absorption band broadening observed for aqueous solution as well as NMR spectra in D2O suggests a micelle‐like structure of PMHT‐Br molecules in these solutions: poly(3‐hexylthiophene) core and 1‐methylimidazolium bromide shell. Despite the disturbing effect of ionic groups, the solid‐state PMHT‐Br shows absorption maximum at 520 nm, the band edge at 660 nm (ca. 1.9 eV), and fluorescence emission with maximum at 635 nm, in a good agreement with the polymer regioregularity. Fluorescence emission maxima: λem (nm): 598 (H2O); 562 (MeOH); 574 (DMSO), occur in a vicinity of corresponding adsorption band edges. Plot of electrical conductivity of PMHT‐Br (measured under the dynamic vacuum conditions, 5 × 10?5 Pa) versus 1/T shows a break at about 70 °C same as the temperature dependence of λmax of the solid PMHT‐Br. These breaks indicate an increase in the mobility of polymer segments and ions within PMHT‐Br; however, a thermal analysis did not provide solid evidence for it. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3073–3081, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号