首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2011篇
  免费   118篇
  国内免费   112篇
化学   1222篇
晶体学   11篇
力学   612篇
综合类   19篇
数学   58篇
物理学   319篇
  2024年   11篇
  2023年   13篇
  2022年   47篇
  2021年   37篇
  2020年   55篇
  2019年   52篇
  2018年   49篇
  2017年   60篇
  2016年   74篇
  2015年   70篇
  2014年   79篇
  2013年   168篇
  2012年   86篇
  2011年   70篇
  2010年   89篇
  2009年   94篇
  2008年   113篇
  2007年   123篇
  2006年   98篇
  2005年   120篇
  2004年   108篇
  2003年   110篇
  2002年   77篇
  2001年   59篇
  2000年   30篇
  1999年   46篇
  1998年   36篇
  1997年   42篇
  1996年   34篇
  1995年   35篇
  1994年   23篇
  1993年   34篇
  1992年   19篇
  1991年   23篇
  1990年   15篇
  1989年   12篇
  1988年   6篇
  1987年   4篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1977年   2篇
  1976年   1篇
排序方式: 共有2241条查询结果,搜索用时 15 毫秒
991.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   
992.
In this work, a series of biodegradable and pH‐responsive hydrogels based on polyphosphoester and poly(acrylic acid) are presented. A novel biodegradable macrocrosslinker α‐methacryloyloxyethyl ω‐acryloyl poly(ethyl ethylene phosphate) (HEMA‐PEOP‐Ac) was synthesized by first ring‐opening polymerization of the cyclic monomer 2‐ethoxy‐2‐oxo‐1,3,2‐dioxaphospholane using HEMA as the initiator and Sn(Oct)2 as catalyst, and subsequent conversion of hydroxyl into vinyl group. The hydrogels were then fabricated by the copolymerization of the macromonomer with acrylic acid, and their swelling/deswelling and degradation behaviors were investigated. The results demonstrated that the crosslinking density and pH values of media strongly influenced both the swelling ratio and the degradation rate of the hydrogels. The rheological properties of these hydrogels were also studied from which the storage modulus (G′) showed clear dependence on the crosslinking density. MTT and “live/dead” assay showed that these hydrogels were compatible to fibroblast cells, not exhibiting apparent cytotoxicity even at high concentrations. Moreover, in vitro bovine serum albumin release from these hydrogels was also investigated, and it could be found that the release profiles showed a burst effect followed by a continuous release phase, and the release rate was inversely proportional to the crosslinking density of hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1919–1930, 2010  相似文献   
993.
The continued evolution of functional materials that contribute to pressing societal challenges requires the development of powerful synthetic methodologies in polymer systems. Since their discovery by Staudinger in the early 20th century, the unique chemistry of ketenes have fascinated synthetic chemists and been the driver of revolutionary applications in photolithography, medicinal chemistry, and commodity materials. The versatile chemistry of ketenes, specifically their ability to act as an electrophile and/or undergo cycloaddition reactions, has recently been shown to provide a powerful platform for the design of next‐generation materials. This Highlight focuses on the history of ketenes in materials science and their recent renaissance in polymer chemistry, with specific focus being given to methodologies that provide reliable access to this important functional group in polymer systems. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3769–3782  相似文献   
994.
A series of novel “jellyfish‐like” graft copolymers with chitooligosaccharide (COS) as shorter backbone and poly(ε‐caprolactone) as longer branches were synthesized using ring‐opening polymerization of ε‐caprolactone via a protection‐polymerization‐deprotection procedure with trimethylsilylchitooligosaccharide as intermediate and triethylaluminum as catalyst precursor. The obtained chitooligosaccharide‐graft‐poly(ε‐caprolactone) polymers possess amphiphilic structure with hydrophilic COS backbone and hydrophobic polycaprolactone branches. Because of this unique “jellyfish‐like” structure, these graft copolymers could self‐assemble to form various morphologies of aggregates in a mixture solution of water and tetrahydrofuran. The transmission electron microscopy studies revealed that the formed aggregates exhibited necklace‐like, flower‐like onion vesicle, and tubular morphologies. It is found that the hydrogen‐bonding formed by the hydroxyl and amino groups remained on the COS backbone played an important role during the aggregation of these graft copolymers, and their morphologies were changed with the varying length of poly (ε‐caprolactone) branches, the concentration of the graft copolymer, and the self‐assembly process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4889–4904, 2008  相似文献   
995.
Aluminum‐based salen and salan complexes mediate the ring‐opening polymerization (ROP) of rac‐β‐butyrolactone (β‐BL), rac‐lactide, and ε‐caprolactone. Al‐salen and Al‐salan complexes exhibit excellent control over the ROP of rac‐β‐butyrolactone, yielding atactic poly(3‐hydroxybutyrate) (PHB) with narrow PDIs of <1.15 for Al‐salen and <1.05 for Al‐salan. Kinetic studies reveal pseudo‐first‐order polymerization kinetics and a linear relationship between molecular weight and percent conversion. These complexes also mediate the immortal ROP of rac‐β‐BL and rac‐lactide, through the addition of excess benzyl alcohol of up to 50 mol eq., with excellent control observed. A novel methyl/adamantyl‐substituted Al‐salen system further improves control over the ROP of rac‐lactide and rac‐β‐BL, yielding atactic PHB and highly isotactic poly(lactic acid) (Pm = 0.88). Control over the copolymerization of rac‐lactide and rac‐β‐BL was also achieved, yielding poly(lactic acid)‐co‐poly(3‐hydroxybutyrate) with narrow PDIs of <1.10. 1H NMR spectra of the copolymers indicate a strong bias for the insertion of rac‐lactide over rac‐β‐BL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
996.
A new family of multiblock copolymers (PEA‐b‐AP) based on poly(ester amide) (PEA) and aniline pentamer (AP) with the unique properties of being both electroactive and biodegradable was synthesized via a two‐stage active solution polycondensation. The new synthesis approach proceeded smoothly, and avoided the complicated purification steps for separating the intermediate products. The molecular weight of PEA blocks was regulated by varying the nucleophilic/electrophilic monomers feed ratios. The chemical structures of the copolymers were confirmed by both IR and NMR spectra. UV‐Vis spectroscopy indicated that the copolymers possessed of the intrinsic electroactivity of AP blocks, and showed three reversible oxidation states. The copolymers had lower degradation rates than the PEA homopolymers with similar molecular weight, and their degradation rates were greatly affected by the proportion of AP blocks. In vitro cell culture studies of the PEA‐b‐APs revealed that they facilitated the proliferation of RSC96 Schwann cells and displayed a good biocompatibility. These biodegradable copolymers with electroactive function may have great potential for use as nerve repair and regeneration scaffold materials in tissue engineering. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4722–4731  相似文献   
997.
998.
Ring‐opening polymerization of 1,4‐dioxan‐2‐one in bulk was initiated by three titanium alkoxides, titanium dichlorodiisopropoxide (TiCl2(OiPr)2), titanium chlorotriisopropoxide (TiCl(OiPr)3), and titanium tetraisopropoxide (Ti(OiPr)4). The results indicate that the polymerization rate increased with number of OiPr groups in the initiator. High conversion of monomer (90%) and high molecular weight (11.9 × 104 g/mol) of resulting polymer can be achieved in only 5 min at 60 °C with Ti(OiPr)4 as an initiator. Analysis on nuclear magnetic resonance (NMR) spectra suggests the initiating sites for TiCl2(OiPr)2, TiCl(OiPr)3, and Ti(OiPr)4 to be 1.9, 2.6, and 3.8, respectively. Coordination‐insertion mechanism for the polymerization via cleavage of the acyl–oxygen bonds of the monomer was proved by NMR investigation. Kinetic studies indicate that polymerization initiated by Ti(OiPr)4 followed a first‐order kinetics, with an apparent activation energy of 33.7 kJ/mol. It is noteworthy that this value is significantly lower than earlier reported values with other catalysts, namely La(OiPr)3 (50.5 kJ/mol) and Sn(Oct)2 (71.8 kJ/mol), which makes it an attractive catalyst for reactive extrusion polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
999.
Novel 5‐Z‐amino‐δ‐valerolactone (5‐NHZ‐VL) was synthesized with an aim to prepare degradable polyesters and copolyesters having amino pendant groups. Following a straightforward and efficient synthetic pathway, 5‐NHZ‐VL was obtained in only two steps and up to 50% yield. The monomer was fully characterized by 1H NMR, 13C NMR, ESI mass spectrometry, and HPLC. Various conventional conditions were tested for this lactone ring‐opening polymerization and led to the novel corresponding poly(5‐NHZ‐VL) (Mn = 7000 g/mol; PD = 1.2). Following this homopolymerization, 5‐NHZ‐VL was copolymerized with ε‐caprolactone to generate a family of copolyesters with an amino‐group content ranging from 10 to 80%. Finally, the polyelectrolyte poly(5‐NH3+‐VL) was recovered by removal of the protecting group under acidic conditions, and integrity of the polyester backbone was confirmed by 1H NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号