首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   41篇
  国内免费   19篇
化学   385篇
晶体学   1篇
力学   2篇
综合类   3篇
物理学   22篇
  2024年   1篇
  2023年   8篇
  2022年   7篇
  2021年   12篇
  2020年   7篇
  2019年   20篇
  2018年   11篇
  2017年   24篇
  2016年   20篇
  2015年   14篇
  2014年   21篇
  2013年   52篇
  2012年   30篇
  2011年   30篇
  2010年   33篇
  2009年   26篇
  2008年   27篇
  2007年   17篇
  2006年   5篇
  2005年   16篇
  2004年   12篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
91.
This study is aimed to develop a well‐defined ABC triblock terpolymer, poly(ethylethylene phosphate)‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (PEEP‐b‐PCL‐b‐PDMAEMA), for co‐encapsulating anticancer drug doxorubicin (DOX) and DNA to form polyplexes. The terpolymer is first synthesized via a combination of ring‐opening polymerization and atom‐transfer radical polymerization techniques, and characterized by 1H NMR and gel permeation chromatography. Subsequently, the self‐assembly behavior of the terpolymer and the micelles loaded with DOX or DNA are investigated by dynamic light scattering, ζ potential, transmission electron microscopy, and gel retardation assay, respectively. In vitro release study reveals that much more DOX is released at pH 5.0 than that at pH 7.4 in the same period. The simultaneous delivery of DOX and green fluorescent protein (GFP)‐labeled DNA is studied by a fluorescence microscope and the results demonstrate that both drug and GFP–DNA can be efficiently delivered into HeLa cells. This system presents a practical and promising carrier for the co‐delivery of drugs and genes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3005–3016  相似文献   
92.
A facile approach to synthesis of ABCDE‐type H‐shaped quintopolymer comprising polystyrene (PSt, C) main chain and poly(ethylene glycol) (PEG, A), poly(ε‐caprolactone) (PCL, B), poly(L ‐lactide) (PLLA, D), and poly(acrylic acid) (PAA, E) side chains was described, and physicochemical properties and potential applications as drug carriers of copolymers obtained were investigated. Azide‐alkyne cycloaddition reaction and hydrolysis were used to synthesize well‐defined H‐shaped quintopolymer. Cytotoxicity studies revealed H‐shaped copolymer aggregates were nontoxic and biocompatible, and drug loading and release properties were affected by macromolecular architecture, chemical composition, and pH value. The release rate of doxorubicin from copolymer aggregates at pH 7.4 was decreased in the order PAA‐b‐PLLA > H‐shaped copolymer > PEG‐PCL‐PSt star, and the release kinetics at lower pH was faster. The H‐shaped copolymer aggregates have a potential as controlled delivery vehicles due to their excellent storage stability, satisfactory drug loading capacity, and pH‐sensitive release rate of doxorubicin. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
93.
In this work, we used Diels–Alder click reaction for the preparation of various types of aliphatic polycarbonates (PCs). We first prepared a novel anthracene‐functionalized cyclic carbonate monomer, anthracen‐9‐ylmethyl 5‐methyl‐2‐oxo‐1,3‐dioxane‐5‐carboxylate (2), followed by ring‐opening polymerization of this monomer to prepare PC with pendant anthracene groups (PC‐anthracene) using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU)/1‐(3,5‐bis(trifloromethyl)phenyl)‐3‐cyclohexylthiourea (TU) as the catalyst and benzyl alcohol as the initiator in CH2Cl2 at room temperature. Subsequently, the resulting PC‐anthracene (Mn,TDGPC = 6000 g/mol, Mw/Mn = 1.22) was grafted with a linear α‐furan protected‐maleimide terminated‐poly(methyl methacrylate) (PMMA‐MI) (Mn,GPC = 3100 g/mol, Mw/Mn = 1.31), or poly(ethylene glycol) (PEG‐MI) (Mn,GPC = 550 g/mol, Mw/Mn = 1.09), or a mixture of PMMA‐MI and PEG‐MI to yield well‐defined PC graft or hetero graft copolymers, PC‐g‐PMMA (Mn,TDGPC = 59000 g/mol, Mw/Mn = 1.22) or PC‐g‐PEG, or PC‐g‐(PMMA)‐co‐PC‐g‐(PEG) (Mn,TDGPC = 39900 g/mol, Mw/Mn = 1.16), respectively, using Diels–Alder click reaction in toluene at 110°C. The Diels–Alder grafting efficiencies were found to be over 97% using UV spectroscopy. Moreover, the structural analyses and the molecular weights of resulting graft copolymers were determined via 1H NMR and triple detection GPC (TD‐GPC), respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
94.
95.
The incorporation of biological function into synthetic polymers provides particular potential for advances in studying the complex interactions between biomolecules and materials. We developed a simple method to create polymer with submicron features on surface of polystyrene‐co‐maleic anhydride (PSMAA) using a combination of phase‐separation and spin coating method. The nanostructured PSMAA which was rarely utilized as biomaterials was further functionalized by doping with dopamine or by treating with nitrogen containing plasma. This study demonstrated a straightforward method that the creation of topographical cues alone improves the biocompatibility of PSMAA thin film. The cell proliferation increased more significantly to ~1.8‐ and 2.5‐fold on dopamine blended and N2/H2 plasma treated PSMAA films when compared to that on the flat sample, respectively. The overall results showed that the integration of microenvironment and chemical functionalities into materials provide promising effects for promoting mammalian cell growth. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
96.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   
97.
Poly(N‐vinylcaprolactam) (PVCL) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) are well known for their thermoresponsive behavior in aqueous solutions. Indeed, they display lower critical solution temperatures (LCST) in the physiological range, which makes them interesting for biomedical devices and use in drug delivery systems. Homopolymers of N‐vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate as well as copolymers thereof were synthesized by solution and direct miniemulsion polymerizations. The cloud points of the copolymers in aqueous solution were investigated as a function of temperature, comonomer ratio, and in the presence of model pharmaceutical ingredients. By variation of the comonomer ratio, it was possible to control the cloud point temperature between 26 and 35 °C, which was found to be beneficial to attenuate the effect of the drugs that also altered the cloud points. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3308–3313  相似文献   
98.
The blend film was prepared by casting solutions of water‐soluble hydroxyethyacryl‐chitosan (HEA‐CS) and polyvinyl alcohol (PVA) and cross‐linked by glutaraldehyde. The structure and properties of the blend films were estimated by wide‐angle X‐ray diffraction (WXRD), contact angle measurements with water, and scanning electron microscopy (SEM). The tensile properties of the blend films were investigated and the tensile strength (TS) and the elongation increased with the increased amount of PVA. The thermal stability (thermogravimetric (TG) and derivative thermogravimetric (DTG)) was evaluated and HEA‐CS was more thermally‐stable than that of PVA. The water swelling properties analysis indicated that HEA‐CS in the blends promoted the water absorption owing to its porous structure and the antimicrobial ability of the blend films was retained. Indirect cytotoxicity assessment of the blend films with human bone sarcoma cell (SW1353) indicated that the biomaterials were non‐toxic and did not release substances harmful to living cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
99.
The effect of doping P3OT with ferric chloride on the attachment and proliferation of MC3T3‐E1 osteoblasts is reported. Cell density and area correlated strongly with doping concentration: cells were larger and exhibited better spreading as doping increased. Cells cultured on undoped P3OT showed a decrease in proliferation between 24 and 48 h followed by a recovery after 72 h. However, this trend diminished with increasing doping concentration, and disappeared completely at the highest dopant level investigated. Analysis of cell‐cell spatial distributions suggested that contact inhibition of proliferation occurred similarly on both undoped and doped P3OT. From these results, FeCl3‐doping had no significant deleterious effect on attachment or proliferation of osteoblasts in vitro.

  相似文献   

100.
A material placed in or in contact with a biological system, that causes the minimum perturbation that can be tolerated by the host biological system, can be considered to be biocompatible. The major effects caused by a contact lens can be considered to be 1) the blocking of the natural supply of oxygen to the epithelium cells of the cornea, 2) interference with the normal evaporation of water from the tear fluid layer, and 3) hindrance of the normal functions of blinking for replenishing oxygen-saturated tear fluid and removing dead epithelium cells, which result from apoptosis. The encapsulation of a highly oxygen-permeable contact lens by a nanofilm with an imperturbable surface state minimizes all these terms. The encapsulated contact lens can be worn safely in extended wear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号