首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   42篇
  国内免费   18篇
化学   396篇
晶体学   1篇
力学   2篇
综合类   3篇
物理学   22篇
  2024年   1篇
  2023年   10篇
  2022年   16篇
  2021年   12篇
  2020年   7篇
  2019年   20篇
  2018年   11篇
  2017年   24篇
  2016年   20篇
  2015年   14篇
  2014年   21篇
  2013年   52篇
  2012年   30篇
  2011年   30篇
  2010年   33篇
  2009年   26篇
  2008年   27篇
  2007年   17篇
  2006年   5篇
  2005年   16篇
  2004年   12篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有424条查询结果,搜索用时 31 毫秒
31.
In the last decade, substantial research in the field of post‐plasma grafting surface modification has focussed on the introduction of carboxylic acids on surfaces by grafting acrylic acid (AAc). In the present work, we report on an alternative approach for biomaterial surface functionalisation. Thin poly‐ε‐caprolactone (PCL) films were subjected to a dielectric barrier discharge Ar‐plasma followed by the grafting of 2‐aminoethyl methacrylate (AEMA) under UV‐irradiation. X‐ray photoelectron spectroscopy (XPS) confirmed the presence of nitrogen. The ninhydrin assay demonstrated, both quantitatively and qualitatively, the presence of free amines on the surface. Confocal fluorescence microscopy (CFM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to visualise the grafted surfaces, indicating the presence of pAEMA. Static contact angle (SCA) measurements indicated a permanent increase in hydrophilicity. Furthermore, the AEMA grafted surfaces were applied for comparing the physisorption and covalent immobilisation of gelatin. CFM demonstrated that only the covalent immobilisation lead to a complete coverage of the surface. Those gelatin‐coated surfaces obtained were further coated using fibronectin. Osteosarcoma cells demonstrated better cell‐adhesion and cell‐viability on the modified surfaces, compared to the pure PCL films.

  相似文献   

32.
The compatible carbon-silicon complex materials originated from precursor diglycerylsilane (DGS) and sugar-modified silane N-(3-triethoxysilylpropyl)gluconamide (GLS) have gained substantial popularity by demonstrating admirable properties to stabilize entrapped biomolecules. The microenvironment inside these materials, especially the distribution of sugar moieties inside the matrix, which is likely the most critical factor determining compatibility of these materials, still remains unclear. To deeply investigate the biocompatibility mechanism of these materials, we have adopted two different preparation routes for these materials by introducing GLS into the starting DGS sol stage, but things are different after the DGS gel is formed. A fluorescence probe rhodamine 6G is introduced herein in the DGS sol to monitor the distribution of GLS moieties, as well as the evolution of the microenvironment inside resulting materials. All in all, the findings demonstrated that the timing of GLS addition plays a critical role in controlling the evolution of the inner structure of materials, suggesting that this factor provides a promising route to tune the properties of the resulting materials. Supported by the National Natural Science Foundation of China (Grant No. 20876176), Scientific Research Foundation for the Returned Overseas Chinese Scholars by the State Education Ministry, Key Project of Chinese Ministry of Education (Grant No. 109100), Doctoral Project of Shandong Province (Grant No. 2008BS09013), Research Foundation of Key Laboratory of Carbon Materials, Institute of Coal Chemistry, CAS (Grant No. KFJJ0506), and Natural Science Foundation of Shandong Province (Grant No. Q2007B02)  相似文献   
33.
《先进技术聚合物》2018,29(1):205-215
In this work, a series of PLGA‐PEG diblock copolymers were synthesized by ring‐opening polymerization of L‐lactide and glycolide using mPEG as macroinitiator and stannous octoate as catalyst. Spherical micelles were obtained from the various copolymers by using co‐solvent evaporation method. The biocompatibility of micelles was evaluated with the aim of assessing their potential in the development of drug delivery systems. Various aspects of biocompatibility were considered, including MTT assay, agar diffusion test, release of cytokines, hemolytic test, dynamic clotting time, protein adsorption in vitro, and zebrafish embryonic compatibility in vivo. The combined results revealed that the micelles present good cytocompatibility and hemocompatibility in vitro. Moreover, the cumulative effects of micelles throughout embryos developing stages have no toxicity in vivo. It is thus concluded that micelles prepared from PLGA‐PEG copolymers present good biocompatibility as potential drug carrier.  相似文献   
34.
The use of carboxylate side chains to induce peptide helicity upon binding to dirhodium centers is examined through experimental and computational approaches. Dirhodium binding efficiently stabilizes α helicity or induces α helicity in otherwise unstructured peptides for peptides that contain carboxylate side chains with i, i+4 spacing. Helix induction is furthermore possible for sequences with i, i+3 carboxylate spacing, though in this case the length of the side chains is crucial: ligating to longer glutamate side chains is strongly helix inducing, whereas ligating the shorter aspartate side chains destabilizes the helical structure. Further studies demonstrate that a dirhodium metallopeptide complex persists for hours in cellular media and exhibits low toxicity toward mammalian cells, enabling exploitation of these metallopeptides for biological applications.  相似文献   
35.
Thermosensitive polylactide‐block‐poly(N‐isopropylacrylamide) (t‐PLA‐b‐PNIPAAm) tri‐armed star block copolymers were synthesized by atom transfer radical polymerization (ATRP) of monomer NIPAAm using t‐PLA‐Cl as macroinitiator. The synthesis of t‐PLA‐Cl was accomplished by esterification of star polylactides (t‐PLA) with 2‐chloropropionyl chloride using trimethylolpropane as a center molecule. FT‐IR, 1H NMR, and GPC analyses confirmed that the t‐PLA‐b‐PNIPAAm star block copolymers had well‐defined structure and controlled molecular weights. The block copolymers could form core‐shell micelle nanoparticles due to their hydrophilic‐hydrophobic trait in aqueous media, and the critical micelle concentrations (CMC) were from 6.7 to 32.9 mg L?1, depending on the system composition. The as‐prepared micelle nanoparticles showed reversible phase changes in transmittance with temperature: transparent below low critical solution temperature (LCST) and opaque above the LCST. Transmission electron microscopy (TEM) observations revealed that the micelle nanoparticles were spherical in shape with core‐shell structure. The hydrodynamic diameters of the micelle nanoparticles depended on copolymer compositions, micelle concentrations and media. MTT assays were conducted to evaluate cytotoxicity of the camptothecin‐loaded copolymer micelles. Camptothecin drug release studies showed that the copolymer micelles exhibited thermo‐triggered targeting drug release behavior, and thus had potential application values in drug controlled delivery. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4429–4439  相似文献   
36.
The behavior of six cyclic acetals and related compounds in the photoinitiation step of a radical photopolymerization was investigated. As shown by the photopolymerization kinetic data obtained from FTIR spectroscopy, most of them are efficient coinitiators in the presence of benzophenone (BP) with efficiencies close to a reference amine coinitiator (ethyl dimethylaminobenzoate, EDB). Laser flash photolysis and ESR spin trapping technique were used to study the photochemical mechanisms of the production of initiating radicals and explain the differences in reactivity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
37.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   
38.
Biocomposite layers of silica and various bone-relevant proteins such as collagen, gelatine and commercial collagen hydrolysate can be obtained from coatings of silica sols mixed with proteins in water/dioxane. Investigations into the mechanical and cell proliferation properties for different sol parameters (pH, solvent), type and concentration of proteins, annealing and crosslinking of the biocomposite layers revealed that such coatings are highly biocompatible with excellent mechanical properties.  相似文献   
39.
The biodegradation rate and biocompatibility of poly (d, / -lactide) (PDLLA)in vivo were evaluated. The aim of this study was to establish a nerve guide constructed by the PDLLA with 3-D microenvironment and to repair a 10 mm of sciatic nerve gap in rats. The process of the nerve regeneration was investigated by histological assessment, electrophysiological examination, and determination of wet weight recovery rate of the gastrocnemius muscle. After 3 weeks, the nerve guide had changed from a transparent to an opaque status. The conduit was degraded and absorbed partly and had lost their strength with breakage at the 9th week of postoperation. At the conclusion of 12 weeks, proximal and distal end of nerves were anastomosed by nerve regeneration and the conduit vanished completely. The results suggest that PDLLA conduits may serve for peripheral nerve regeneration and PDLLA is a sort of hopeful candidate for tissue engineering.  相似文献   
40.
脂肪族聚酯是一类越来越受到关注的生物可降解生物材料。由于所有的医疗和药物制品在临床应用时都将不同程度地同机体组织或血液接触,而其表面又将是首先与机体组织或血液接触的部分,因此脂肪族聚酯医用制品的表面生物相容性更是同制品生物安全性和有效性有直接关系的性质。本文在分析脂肪族聚酯自身特性及对其制品表面生物相容性影响因素的基础上,介绍了采用物理、化学和等离子体处理方法对脂肪族聚酯制品表面生物相容性的改进。在分析和讨论各表面改性方法优点的同时,也指出了该法所存在的缺点、不足和应用的局限性。从而可为提高具体的脂肪族聚酯医用制品的表面生物相容性提供可供选择的表面改性方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号