首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   42篇
  国内免费   18篇
化学   396篇
晶体学   1篇
力学   2篇
综合类   3篇
物理学   22篇
  2024年   1篇
  2023年   10篇
  2022年   16篇
  2021年   12篇
  2020年   7篇
  2019年   20篇
  2018年   11篇
  2017年   24篇
  2016年   20篇
  2015年   14篇
  2014年   21篇
  2013年   52篇
  2012年   30篇
  2011年   30篇
  2010年   33篇
  2009年   26篇
  2008年   27篇
  2007年   17篇
  2006年   5篇
  2005年   16篇
  2004年   12篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有424条查询结果,搜索用时 31 毫秒
21.
The novel aminoporphyrin‐end‐functionalized poly(N‐isopropylacrylamide) (PNIPAM) polymer H2N‐TPP‐PNIPAM (TPP=5,10,15,20‐tetraphenyl‐21H,23H‐porphyrin) behaves as a multifunctional platform that displays a photodynamic effect, thermosensitivity, and fluorescence properties. The polymer was designed by using an asymmetrical aminoporphyrin (i.e., H2N‐TPP‐Cl) as the initiator for the atom‐transfer radical polymerization of N‐isopropylacrylamide (NIPAM). The polydispersity index (PDI) obtained by gel‐permeation chromatography indicated that the molecular‐weight distribution was narrow (1.09<PDI<1.27). The lower critical solution temperatures of H2N‐TPP‐PNIPAM showed a decreasing trend as the molecular weight was increased as a result of the incorporation of the porphyrin group at the end of the chain. The fluorescence spectra revealed the luminescent properties of the materials. The results of confocal laser scanning microscopy showed that the polymer could enter the cytoplasm through endocytosis. In addition, the multifunctional platform exhibited low toxicity against normal cells (L929) and cancer cells (Hela) and enhanced photodynamic activity towards HeLa cells, without significant necrocytosis towards L929 cells; as a result this material may be useful in the future for practical photodynamic therapy.  相似文献   
22.
Abstract

Wound healing is a complex process and it involves restoration of damaged skin tissues. Several wound dressings comprising naturally made substances are constantly investigated to assist wound healing. In this research, a new wound dressing based on polyurethane (PU) supplemented with essence of Channa striatus (CS) fish oil was made by electrospinning. Morphological study depicted the reduction in fiber diameter than PU with the addition of fish oil (0.552?±?0.109?μm for 8:1 v/v% and 0.519?±?0.196?μm 7:2 v/v%) than the pristine PU (0.971?±?0.205?µm). Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of fish oil in the composite as identified through increasing peak intensity. Fish oil resulted in the hydrophilic behavior (88?±?3 (8:1 v/v) and 70?±?6 (7:2 v/v)) as revealed in the contact angle analysis. Thermal gravimetric analysis (TGA) showed the superior thermal behavior of the wound dressing patch compared to the PU. Atomic force microscopy (AFM) analysis insinuated a decrease in the surface roughness of the pristine polyurethane with the added fish oil. Coagulation assays signified the delay in the blood clotting time portraying its anti-thrombogenic behavior. Hemolytic assay revealed the less toxic nature of the developed nanocomposites with the red blood cells (RBC’s) depicting its safety with blood. Hence, polyurethane nanofibers supplemented with fish oil made them as deserving candidates for wound dressing application.  相似文献   
23.
临床外科手术缝合费时费力,且容易留下疤痕,医用粘合剂为解决这些问题提供了一种有效手段。本文基于在生物材料领域广泛应用的可降解材料聚癸二酸甘油酯(PGS),研制了一种新型的可降解蓝光固化医用粘合剂。以PGS为基体与甲基丙烯酸(2-异氰基乙基)酯反应制得聚癸二酸甘油酯接枝甲基丙烯酸(2-异氰基乙基)酯(PGS-IM)粘结剂,其结构和性能经1H NMR, ATR-FTIR, TGA和DSC表征。并测试了其蓝光固化后的粘结性能,考察了其生物相容性。结果显示:PGS-IM的玻璃化转变温度为-30.6 ℃;玻璃和PET板的粘结强度分别为0.84±0.12 MPa和0.39±0.07 MPa。 RAECs培养实验显示其具有良好的生物相容性。  相似文献   
24.
Considering for the potential application in tissue engineering, polyaniline (PANi) film was fabricated via a two-step route: a self-assembled monolayer of C6H5NHC3H6Si(OMe)3 was firstly formed on the single-crystal Si substrate; the conducting PANi film was then prepared through electroless surface polymerization of the aniline molecules on the aniline monolayer-bearing silane surface in an acidic aqueous solution. The formation of PANi film on Si surface was confirmed by characterizations of X-ray photoelectron spectroscope (XPS) and specular reflectance Fourier transform infrared (SR-FTIR) spectrum, etc. At last, the proliferation behaviors of PC-12 cells on the PANi film surface were studied by the [3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assays, acridine orange fluorometric staining, and scanning electron microscope (SEM) observation, etc. The results demonstrate that the as-prepared PANi film provides high ability for cell proliferation, exhibiting promising potentials as surface coating to cultivate neuronal cells for applications in the tissue engineering.  相似文献   
25.
In this work, we synthesized two MDI-based polyurethanes, including a poly(ether)urethane (PEU) and a poly(carbonate)urethane (PCU), by using different soft segments, poly(tetramethylene oxide) and poly(hexyl, ethyl)carbonate diol (M approximately 2,000). We demonstrated that, in addition to the enhanced biostability of PCU over PEU, the biological performances of PCU in vitro were also improved in general. These included, better cellular attachment and proliferation, less platelet activation, as well as reduced monocyte activation. The unusual wide-ranging enhancement in biocompatibility for PCU was believed to be related to the larger micro-phase separation in PCU (approximately 25 nm) that caused distinct protein adsorption on the surface. The total number of adherent monocytes (nonactivated and activated) on the bare sample surfaces, albumin pre-adsorbed sample surfaces, and fibrinogen pre-adsorbed sample surfaces.  相似文献   
26.
In this contribution, a versatile approach for the synthesis of functionalized particles for drug delivery is presented, using two nonaggressive standardized procedures. The first procedure considered is the functionalization of an azido‐terminated α‐norbornenyl poly(ethylene oxide) (PEO) macromonomer with an alkyne‐containing active molecule via the copper catalyzed azide alkyne cycloaddition, click type reaction. The functionalized macromonomer is then polymerized by Ring‐Opening Metathesis Polymerization (ROMP) in dispersion to form functionalized particles. The second procedure consists in synthesizing particles by ROMP in dispersed media of norbornene with azido‐terminated α‐norbornenyl PEO macromonomer. The ROMP was initiated by the first generation Grubbs catalyst. Such functionalized core‐shell particles have stealthy properties due to their PEO shell and can be viewed as universal nanocarriers on which any alkyne‐modified active molecule can be grafted by click chemistry. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
27.
The last decade has seen a remarkable interest in the use of biocompatible and biodegradable polymers as scaffolds for tissue engineering. The fabrication of 3D scaffolds by lithography‐based additive manufacturing technology (AMT) represents an appealing approach. As poly(lactic acid), the state of the art biocompatible and biodegradable material, cannot be processed by these photopolymerization‐based techniques, it has so far been necessary to use selected (meth)acrylates. By developing new photopolymers based on vinyl carbonates and vinyl carbamates as a reactive group we have been able to avoid most of the disadvantages of classical (meth)acrylate‐based photopolymers. The new generation of biocompatible monomers show low cytotoxicity, have good storage stability, and are sufficiently photoreactive to be structured by lithography based AMT. The mechanical properties and rates of degradation of the polymers can be easily tuned over a broad range. Degradation results in the formation of nonacidic and nontoxic degradation products of low molecular weight that can be easily transported within the human body. Initial in vivo tests showed significant osseointegration of the 3D cellular scaffolds and no signs of implant rejection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
28.
Biomaterials generally suffer from rapid nonspecific protein adsorption, which initiates many deleterious host responses, and complex chemistries that are employed to facilitate cellular interactions. A chemical approach that, based upon current literature, combines a nonfouling architecture with a biomemtic cell‐adhesive end‐group, is presented. Namely, surface‐initiated polymerization of zwitterionic [poly (carboxybetaine methacrylamide)] brushes, with controlled charge densities and phosphonate head groups. Nitroxide mediated free radical polymerization (NMFRP) was employed for various reasons: reduces presence of potentially cytotoxic organometallic catalysts common in atom transfer radical polymerization (ATRP); and it allows a phosphonate end‐group instead of the common brominated end‐group. Thermally oxidized silicon wafers were covalently functionalized with diethyl‐(1‐(N‐(1‐(3‐(trimethoxysilyl)propylcarbamoyl)ethoxy)‐N‐tert‐butylamino)ethyl)phosphonate. NMFRP was used to graft zwitterionic carboxybetaine methacrylamide monomers of varying inter‐charge separation. The resulting thin films were characterized using Attenuated Total Reflectance‐Fourier Transform Infrared (ATR‐FTIR) and X‐ray photoelectron (XPS) spectroscopy, ellipsometry, water contact angle analysis, and thermo gravimetric analysis (TGA). The effect of spacer group on the surface charge density was determined using zeta potential techniques. It is thought that this stratagem will facilitate the ability to tailor systematically both the interior and terminal polymer properties, providing a platform for further understanding how these conditions affect protein adsorption as well as cell‐surface interactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
29.
The amino acid esters of hydroxypropyl cellulose (HPC) [R′ = H ( 2a ), CH3 ( 2b ), CH2CH(CH3)2 ( 2c ), CH2CONH2 ( 2d ), CH2CH2CONH2 ( 2e ), CH2CH2CH2CH2 NHOCOC(CH3)3 ( 2f )] were synthesized in good yield by the reaction of t‐butoxycarbonyl (t‐Boc)‐protected amino acids with hydroxy groups of HPC ( 1 ; molar substitution (MS), 4.61). The amino acid functionalities displaying varied chemical nature, shape, and bulk were utilized and the bulk of the substituent on the α‐carbon of amino acids was elucidated to be of vital significance for the observed degree of incorporation (DSEst). The 1H NMR spectra and elemental analysis were employed to determine the degree of incorporation of amino acid moiety (DSEst) and almost complete substitution of the hydroxy protons was revealed for 2a , 2b , and 2f . The presence of the peaks characteristic of the carbonyl group in the FTIR spectra furnished further evidence for the successful esterification of HPC. The starting as well as the resulting polymers ( 1 and 2a – f ) were soluble in polar organic solvents; however, the esterification of 1 with bulky organic moieties resulted in an increased hydrophobicity as all of the amino acid‐functionalized polymers ( 2a – f ) were insoluble in water. The onset temperatures of weight loss of 2a – f were 175–230 °C, indicating fair thermal stability. The amino acid functionalization led to the enhanced polymer chain stiffness, and the glass transition temperatures of the derivatized polymers were 30–40 °C higher than that of 1 (Tg 3.9 °C; cf. Tg of 2a – f , 35.1–43.3 °C). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2326–2334, 2008  相似文献   
30.
PLLA microspheres were aminolyzed in hexanediamine/propanol solution to introduce free amino groups on their surface, which were further transferred into aldehyde groups by a treatment of glutaraldehyde. Chitosan‐graft‐lactose was then covalently coupled via Schiff base formation. Morphological variation and chitosan‐graft‐lactose immobilization were characterized. In vitro culture of rabbit auricular chondrocytes demonstrated that the PLLA microcarriers could effectively support the cell attachment and particularly induce cell aggregation on their surface. The formed cell aggregates/microcarriers composite showed higher viability and extracellular matrix production. Thus, the PLLA microcarriers can be potentially used as an injectable delivery system for cartilage repair.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号