首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   53篇
  国内免费   134篇
化学   530篇
力学   1篇
综合类   2篇
数学   2篇
物理学   27篇
  2024年   4篇
  2023年   14篇
  2022年   32篇
  2021年   50篇
  2020年   58篇
  2019年   33篇
  2018年   31篇
  2017年   22篇
  2016年   31篇
  2015年   20篇
  2014年   22篇
  2013年   22篇
  2012年   22篇
  2011年   18篇
  2010年   20篇
  2009年   27篇
  2008年   23篇
  2007年   12篇
  2006年   14篇
  2005年   12篇
  2004年   15篇
  2003年   10篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1987年   2篇
  1979年   1篇
  1976年   1篇
  1959年   1篇
排序方式: 共有562条查询结果,搜索用时 390 毫秒
11.
Bifunctional periodic mesoporous organosilica materials with and without cobalt ion incorporation were synthesized by co-condensation of 1,2-bistrimethoxysilylethane (BTME) with 3-glycidoxypropyltriethoxysilane (GPTS) in the presence of cetyltrimethylammonium bromide. Nitrogen gas adsorption on samples with varying ratios of BTME:GPTS revealed that increasing the amount of GPTS affects pore size, surface area and pore volume as well as shapes of the isotherms and hysteresis loops. The hysteresis loops of the Type IV isotherms obtained for GPTS-modified ethane silica materials (without cobalt ion) change from Type H3 to Type H4 with increasing GPTS content. There is a tendency for pore sizes to change from mesopore to micropore when the amount of GPTS is increased. Isotherms of cobalt ion incorporated GPTS-modified ethane silica materials change from Type IV to Type I with increasing GPTS content. The surface area, pore volume and pore diameter decrease with increasing loading of GPTS as well as after cobalt ion incorporation. Thermogravimetric analysis and differential thermal analysis show that the surfactant is removed by solvent extraction. Cobalt ion incorporation is confirmed by powder X-ray diffraction and Raman spectroscopy.  相似文献   
12.
Hydrolyses of phosphorus halides, (RO)(2)POX where R = H or Me and X = F or Cl, in the gas phase and in the reaction field have been investigated theoretically with ab initio and the density functional theory (DFT). The free energy of activation in the reaction field was also estimated using the Onsager method with a correction of entropy change and basis set superposition error (BSSE). The reaction of (MeO)(2)POF proceeds through a path with bifunctional catalysis regardless of the medium, but the reaction of (MeO)(2)POCl proceeds through bifunctional and general base catalysis in the gas phase and in water, respectively. The estimated free energy barrier of 23 kcal/mol for the hydrolysis of (MeO)(2)POF is in good agreement with the experimental values of 24 kcal/mol, and relative barrier of 3 kcal/mol to the (MeO)(2)POCl is also in good agreement with the experimental values of 5 kcal/mol of diisopropyl phosphorus halides ((Pr(i)O)(2)POX, X = F and Cl).  相似文献   
13.
Fe0.95S1.05 with high reactivity and stability was incorporated into WS2 nanosheets via a one-step solvothermal method for the first time. The resulted hybrid catalyst has much higher catalytic activity than WS2 and Fe0.95S1.05 alone, and the optimal WS2/Fe0.95S1.05 hybrid catalyst was found by adjusting the feed ratio. The addition of Fe0.95S1.05 was proven to be able to enhance the hydrogen evolution reaction (HER) activity of WS2, and vice versa. At the same time, it was found that the catalytic effect of the hybrid catalyst was the best when the feed ratio was W : Fe=2 : 1. In other words, we confirmed that there is a synergistic effect between W- and Fe-based sulfide hybrid catalysts, and validated that the reason for the improved HER performance is the strong interaction between the two in the middle sulfur. WS2/Fe0.95S1.05-2 hybrid catalyst leads to enhanced HER activity, which shows a low overpotential of ∼0.172 V at 10 mA cm−2, low Tafel slope of ∼53.47 mV/decade. This study supplies innovative synthesis of a highly active WS2/Fe0.95S1.05 hybrid catalyst for HER.  相似文献   
14.
Our group has developed a series of molecular electrocatalysts for hydrogen generation based on triazenido–metal complexes (cobalt, copper, etc.). In this paper, we first present the electrocatalytic performance of a new dinuclear silver complex, [Ag2(L)2], formed by the reaction of the triazenido ligand 1‐[(2‐carboxymethyl)benzene]‐3‐[(2‐methoxy)benzene]triazene (HL) with AgNO3. At room temperature, the silver complex shows photoluminescence at 653 nm. The electrocatalytic systems based on this silver complex can afford 106.57 and 1536.36 moles of hydrogen per mole of catalyst per hour from acetic acid at an overpotential (OP) of 991.6 mV and from a neutral aqueous buffer (pH = 7.0) at an OP of 837.6 mV, respectively. Electrochemical investigations show that both silver ion and triazenido ligand play a role in determining the catalytic activities of the electrocatalytic system.  相似文献   
15.
We describe the discovery of novel low cost bifunctional initiators 2,4,7,9‐tetramethyl‐tricyclo[6.2.0.036]deca‐1(8),2,6‐triene‐4,9‐diol (bBCB‐diOH) and 4,9‐dichloro,2,4,7,9‐tetramethyl‐tricyclo[6.2.0.036]deca‐1(8),2,6‐triene (bBCB‐diCl), for living cationic bidirectional polymerization of olefins, for example, isobutylene. bBCB‐diOH was quantitatively synthesized in one step by UV radiation of commercially available diacetyl durene (DAD) and bBCB‐diCl by hydrochlorination of bBCB‐diOH. These molecules, in conjunction with TiCl4 coinitiator, initiate the living polymerization of isobutylene. Livingness was demonstrated by linear conversion versus molecular weight (MW) plots and narrow MW distributions. Polymerizations are slower than those initiated by the universally used “hindered” bifunctional initiator 5‐tert‐butyl‐1,3‐bis(1‐chloro‐1‐methyl)benzene and are suitable for rate studies. Herein, we report the synthesis, by the use of bBCB‐diCl, of relatively low MW (M n < 3000 g mol?1) allyl‐telechelic polyisobutylene (PIB) used for the synthesis of PIB‐based polyurethanes and that of relatively high MW (M n > 30,000) living PIB telechelics for the synthesis of thermoplastic elastomers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3716–3724  相似文献   
16.
Asymmetric 1,2-additions of cyanide yield enantioenriched cyanohydrins as versatile chiral building blocks. Next to HCN, volatile organic cyanide sources are usually used. Among them, cyanoformates are more attractive on technical scale than TMSCN for cost reasons, but catalytic productivity is usually lower. Here, the development of a new strategy for cyanations is described, in which this activity disadvantage is overcome. A Lewis acidic Al center cooperates with an aprotic onium moiety within a remarkably robust bifunctional Al–F–salen complex. This allowed for unprecedented turnover numbers of up to 104. DFT studies suggest an unexpected unique trimolecular pathway in which the ammonium bound cyanide attacks the aldehyde, which itself is activated by the carbonyl group of the cyanoformate binding to the Al center. In addition, a novel practical carboxycyanation method was developed that makes use of KCN as the sole cyanide source. The use of a pyrocarbonate as carboxylating reagent provided the best results.  相似文献   
17.
Implementing sustainable energy conversion and storage technologies is highly reliant on crucial oxygen electrocatalysis, such as the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, the pursuit of low cost, energetic efficient and robust bifunctional catalysts for OER and ORR remains a great challenge. Herein, the novel Na-ion-deficient Na2−xCoP2O7 catalysts are proposed to efficiently electrocatalyze OER and ORR in alkaline solution. The engineering of Na-ion deficiency can tune the electronic structure of Co, and thus tailor the intrinsically electrocatalytic performance. Among the sodium cobalt phosphate catalysts, the Na1.95CoP2O7 (NCPO5) catalyst exhibits the lowest ΔE (EJ10,OER−EJ−1,ORR) of only 0.86 V, which favorably outperforms most of the reported non-noble metal catalysts. Moreover, the Na-ion deficiency can stabilize the phase structure and morphology of NCPO5 during the OER and ORR processes. This study highlights the Na-ion deficient Na2−xCoP2O7 as a promising class of low-cost, highly active and robust bifunctional catalysts for OER and ORR.  相似文献   
18.
Bifunctional catalysts bearing two catalytic sites, Lewis acidic organometallic titanocene and Brønsted acidic COOH, have been assembled in situ from Cp2TiCl2 with carboxylic acid ligands, showing high catalytic activity over an intramolecular Mannich reaction towards synthesis of 2‐aryl‐2,3‐dihydroquinolin‐4(1H)‐ones. The determination of the bifunctional catalyst Cp2Ti(C8H4NO6)2 was elucidated by single X‐ray HR‐MS and investigation of catalytic behavior. In particular, masking the Brønsted acidic COOH catalytic site with dormant COOMe lowered the reaction yield greatly, indicating that two catalytic sites work together to maintain high catalytic efficiency.  相似文献   
19.
A theoretical study was carried out on the unimolecular reaction of an enediyne with a fused butylated hydroxytoluene to internally scavenge the p‐benzyne diradical sites formed after the Bergman cyclization. The calculations revealed that the conversion of the p‐benzyne diradical (2‐tert‐butyl‐4‐methyl‐5,8‐didehydro‐1‐naphthalenol) to p‐quinone methide is favored over the conversion to a phenoxy/benzene diradical 4 in an approximate 95:5 ratio. Based on this model, the Bergman cyclization leads in a bifunctional manner to intermediates for competing reactivity with intermolecular H‐atom abstraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
20.
This work demonstrates an efficient way to prepare chiral propargylic alcohols by asymmetric addition of terminal Zn-acetylide to aldehydes catalyzed by bifunctional zinc-based complexes. The corresponding products with moderate to good yields and enantioselectivities were obtained in the absence of moisture-sensitive Ti(O i Pr)4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号