首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109319篇
  免费   6475篇
  国内免费   13393篇
化学   87833篇
晶体学   1792篇
力学   3050篇
综合类   909篇
数学   12867篇
物理学   22736篇
  2024年   103篇
  2023年   817篇
  2022年   1886篇
  2021年   2078篇
  2020年   2752篇
  2019年   2665篇
  2018年   2410篇
  2017年   3462篇
  2016年   3761篇
  2015年   3055篇
  2014年   4013篇
  2013年   8659篇
  2012年   7371篇
  2011年   5960篇
  2010年   5071篇
  2009年   6946篇
  2008年   6952篇
  2007年   7289篇
  2006年   6559篇
  2005年   5603篇
  2004年   5155篇
  2003年   4281篇
  2002年   5412篇
  2001年   3296篇
  2000年   3091篇
  1999年   2883篇
  1998年   2522篇
  1997年   2005篇
  1996年   1750篇
  1995年   1679篇
  1994年   1456篇
  1993年   1219篇
  1992年   1125篇
  1991年   777篇
  1990年   697篇
  1989年   644篇
  1988年   541篇
  1987年   467篇
  1986年   382篇
  1985年   306篇
  1984年   344篇
  1983年   163篇
  1982年   272篇
  1981年   204篇
  1980年   218篇
  1979年   206篇
  1978年   177篇
  1977年   127篇
  1976年   110篇
  1973年   79篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Summary. The dimensional reduction method for solving boundary value problems of Helmholtz's equation in domain by replacing them with systems of equations in dimensional space are investigated. It is proved that the existence and uniqueness for the exact solution and the dimensionally reduced solution of the boundary value problem if the input data on the faces are in some class of functions. In addition, the difference between and in is estimated as and are fixed. Finally, some numerical experiments in a domain are given in order to compare theretical results. Received April 2, 1996 / Revised version received July 30, 1990  相似文献   
992.
993.
An evolutionary method for optimization of plate buckling resistance   总被引:9,自引:0,他引:9  
Optimization of plate buckling resistance is very complicated, because the in-plane stress resultants in the prebuckled state of a plate are functions of thickness distribution. This paper discusses the problem of finding the optimum thickness distribution of isotropic plate structures, with a given volume and layout, that would maximise the buckling load. A simple numerical method using the finite-element analysis is presented to obtain the optimum thickness distribution. Optimum designs of compression-loaded rectangular plates with different boundary conditions and plate aspect ratios are obtained by using the proposed method. Optimum designs from earlier studies and the methods of buckling analysis used to attain these results are discussed and compared with the designs from the proposed method. This paper also examines the reliability of the optimality criterion generally used for plate buckling optimization, which is based on the uniform strain energy density.  相似文献   
994.
We study the large-time behavior and rate of convergence to the invariant measures of the processes dX (t)=b(X) (t)) dt + (X (t)) dB(t). A crucial constant appears naturally in our study. Heuristically, when the time is of the order exp( – )/2 , the transition density has a good lower bound and when the process has run for about exp( – )/2, it is very close to the invariant measure. LetL =(2/2) – U · be a second-order differential operator on d. Under suitable conditions,L z has the discrete spectrum
- \lambda _2^\varepsilon ...and lim \varepsilon ^2 log \lambda _2^\varepsilon = - \Lambda \hfill \\ \varepsilon \to 0 \hfill \\ \end{gathered} $$ " align="middle" vspace="20%" border="0">  相似文献   
995.
Summary In the present work we extent the results in [RS] on CHIP, i.e. Cardinal Hermite Interpolation by the span of translates of directional derivatives of a box spline. These directional derivatives are that ones which define the type of the Hermite Interpolation. We admit here several (linearly independent) directions with multiplicities instead of one direction as in [RS]. Under the same assumptions on the smoothness of the box spline and its defining matrixT we can prove as in [RS]: CHIP has a system of fundamental solutions which are inL L 2 together with its directional derivatives mentioned above. Moreover, for data sequences inl p ( d ), 1p2, there is a spline function inL p, 1/p+1/p=1, which solves CHIP.Research supported in part by NSERC Canada under Grant # A7687. This research was completed while this author was supported by a grant from the Deutscher Akademischer Austauschdienst  相似文献   
996.
In this paper, assuming a certain set-theoretic hypothesis, a positive answer is given to a question of H. Kraljevi, namely it is shown that there exists a Lebesgue measurable subsetA of the real line such that the set {c R: A + cA contains an interval} is nonmeasurable. Here the setA + cA = {a + ca: a, a A}. Two other results about sets of the formA + cA are presented.  相似文献   
997.
IfK is a field of characteristic 0 then the following is shown. Iff, g, h: M n (K) K are non-constant solutions of the Binet—Pexider functional equation
  相似文献   
998.
The purpose of this paper is to solve the following Pythagorean functional equation:(e p(x,y) ) 2 ) = q(x,y) 2 + r(x, y) 2, where each ofp(x,y), q(x, y) andr(x, y) is a real-valued unknown harmonic function of the real variablesx, y on the wholexy-planeR 2.The result is as follows.  相似文献   
999.
We solve the functional equation
  相似文献   
1000.
LetC m be a compound quadrature formula, i.e.C m is obtained by dividing the interval of integration [a, b] intom subintervals of equal length, and applying the same quadrature formulaQ n to every subinterval. LetR m be the corresponding error functional. Iff (r) > 0 impliesR m [f] > 0 (orR m [f] < 0),=" then=" we=" say=">C m is positive definite (or negative definite, respectively) of orderr. This is the case for most of the well-known quadrature formulas. The assumption thatf (r) > 0 may be weakened to the requirement that all divided differences of orderr off are non-negative. Thenf is calledr-convex. Now letC m be positive definite or negative definite of orderr, and letf be continuous andr-convex. We prove the following direct and inverse theorems for the errorR m [f], where , denotes the modulus of continuity of orderr:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号