首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17941篇
  免费   1579篇
  国内免费   621篇
化学   5466篇
晶体学   80篇
力学   6858篇
综合类   123篇
数学   2634篇
物理学   4980篇
  2024年   21篇
  2023年   164篇
  2022年   294篇
  2021年   348篇
  2020年   438篇
  2019年   342篇
  2018年   387篇
  2017年   471篇
  2016年   488篇
  2015年   552篇
  2014年   680篇
  2013年   1203篇
  2012年   936篇
  2011年   1108篇
  2010年   791篇
  2009年   1020篇
  2008年   968篇
  2007年   1077篇
  2006年   936篇
  2005年   804篇
  2004年   871篇
  2003年   704篇
  2002年   633篇
  2001年   459篇
  2000年   481篇
  1999年   421篇
  1998年   426篇
  1997年   397篇
  1996年   361篇
  1995年   323篇
  1994年   277篇
  1993年   271篇
  1992年   257篇
  1991年   190篇
  1990年   177篇
  1989年   151篇
  1988年   127篇
  1987年   80篇
  1986年   82篇
  1985年   95篇
  1984年   82篇
  1983年   47篇
  1982年   88篇
  1981年   38篇
  1980年   21篇
  1979年   15篇
  1978年   13篇
  1976年   5篇
  1971年   6篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Numerical modeling of multiphase flow generally requires a special procedure at the solid wall in order to be consistent with Young's law for static contact angles. The standard approach in the lattice Boltzmann method, which consists of imposing fictive densities at the solid lattice sites, is shown to be deficient for this task. Indeed, fictive mass transfer along the boundary could happen and potentially spoil the numerical results. In particular, when the contact angle is less than 90 degrees, the deficiencies of the standard model are major. Various videos that demonstrate this behavior are provided (Supporting Information). A new approach is proposed and consists of directly imposing the contact angle at the boundaries in much the same way as Dirichlet boundary conditions are generally imposed. The proposed method is able to retrieve analytical solutions for static contact angles in the case of straight and curved boundaries even when variable density and viscosity ratios between the phases are considered. Although the proposed wetting boundary condition is shown to significantly improve the numerical results for one particular class of lattice Boltzmann model, it is believed that other lattice Boltzmann multiphase schemes could also benefit from the underlying ideas of the proposed method. The proposed algorithm is two‐dimensional, and the D2Q9 lattice is used. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
992.
The effect of variation of injection conditions and addition of nano-calcium carbonate (CaCO3), nano-silicon dioxide (SiO2) and full-vulcanized nano-powdered styrene butadiene rubber (PSBR) on the shrinkage of injection-molded polypropylene-ethylene copolymer (90/10, co-PP) were investigated. The results showed that the shrinkage was different for different locations along the flow path. The shrinkage in the length direction of the injection-molded sample varied with the adjustment of the processing parameters, while the shrinkage in the width and thickness direction was almost unchanged. The addition of nano-CaCO3 and PSBR decreased the shrinkage of co-PP, while the shrinkage of co-PP/ SiO2 composite was almost unchanged.  相似文献   
993.
The high demand for lung transplants cannot be matched by an adequate number of lungs from donors. Since fully ex-novo lungs are far from being feasible, tissue engi-neering is actively considering implantation of engineered lungs where the devitalized structure of a donor is used as scaffold to be repopulated by stem cells of the receiv-ing patient. A decellularized donated lung is treated inside a bioreactor where transport through the tracheobronchial tree (TBT) will allow for both deposition of stem cells and nour-ishment for their subsequent growth, thus developing new lung tissue. The key concern is to set optimally the boundary conditions to utilize in the bioreactor. We propose a pre-dictive model of slow liquid ventilation, which combines a one-dimensional (1-D) mathematical model of the TBT and a solute deposition model strongly dependent on fluid velocity across the tree. With it, we were able to track and drive the concentration of a generic solute across the airways, look-ing for its optimal distribution. This was given by properly adjusting the pumps' regime serving the bioreactor. A feed-back system, created by coupling the two models, allowed us to derive the optimal pattern. The TBT model can be easily invertible, thus yielding a straightforward flow/pressure law at the inlet to optimize the efficiency of the bioreactor.  相似文献   
994.
Some issues of He–Chen–Zhang lattice Boltzmann equation (LBE) method (referred as HCZ model) (J. Comput. Physics 1999; 152 :642–663) for immiscible multiphase flows with large density ratio are assessed in this paper. An extended HCZ model with a filter technique and mass correction procedure is proposed based on HCZ's LBE multiphase model. The original HCZ model is capable of maintaining a thin interface but is prone to generating unphysical oscillations in surface tension and index function at moderate values of density ratio. With a filtering technique, the monotonic variation of the index function across the interface is maintained with larger density ratio. Kim's surface tension formulation for diffuse–interface method (J. Comput. Physics 2005; 204 :784–804) is then used to remove unphysical oscillation in the surface tension. Furthermore, as the density ratio increases, the effect of velocity divergence term neglected in the original HCZ model causes significant unphysical mass sources near the interface. By keeping the velocity divergence term, the unphysical mass sources near the interface can be removed with large density ratio. The long‐time accumulation of the modeling and/or numerical errors in the HCZ model also results in the error of mass conservation of each dispersed phase. A mass correction procedure is devised to improve the performance of the method in this regard. For flows over a stationary and a rising bubble, and capillary waves with density ratio up to 100, the present approach yields solutions with interface thickness of about five to six lattices and no long‐time diffusion, significantly advancing the performance of the LBE method for multiphase flow simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
According to the current demands of Green Analytical Chemistry and regarding the need for lower reagent consumption with improved analytical performance, an automatic methodology with a flow-through optosensor incorporating solid-phase spectrophotometric detection was developed. The sensor used in this work was based on the redox state of thionine whose oxidized form is blue and reduced form is colorless with monitoring carried out at 621 nm. This redox indicator was immobilized on gel beads and subsequently packed into a flow-through cell. It was then assembled into a sequential injection system and was shown to be an excellent alternative to monitor enzymatic redox reactions automatically as the redox catalysis is performed by glucose dehydrogenase. This enzyme is a representative dehydrogenase enzyme and uses NAD+ as cofactor, promoting the oxidation of glucose to glucono-lactone and reduction of NAD+ to NADH. The produced NADH promotes color depletion on the surface of the sensor. The calibration graph for glucose was linear between 5.74 × 10−4 and 2.00 × 10−3 mol L−1 and detection limit was 1.72 × 10−4 mol L−1. Glucose concentration in different samples including sera, salines, perfusion solutions, powder for preparing oral solutions and solutions for hemodialysis was determined. The method proved to be reproducible with a RSD < 5% for glucose determinations.  相似文献   
996.
We empirically investigated the effects of market factors on the information flow created from N(N−1)/2 linkage relationships among stocks. We also examined the possibility of employing the minimal spanning tree (MST) method, which is capable of reducing the number of links to N−1. We determined that market factors carry important information value regarding information flow among stocks. Moreover, the information flow among stocks showed time-varying properties according to the changes in market status. In particular, we noted that the information flow increased dramatically during periods of market crises. Finally, we confirmed, via the MST method, that the information flow among stocks could be assessed effectively with the reduced linkage relationships among all links among stocks from the perspective of the overall market.  相似文献   
997.
A numerical method is presented for the analysis of interactions of inviscid and compressible flows with arbitrarily shaped stationary or moving rigid solids. The fluid equations are solved on a fixed rectangular Cartesian grid by using a higher‐order finite difference method based on the fifth‐order WENO scheme. A constrained moving least‐squares sharp interface method is proposed to enforce the Neumann‐type boundary conditions on the fluid‐solid interface by using a penalty term, while the Dirichlet boundary conditions are directly enforced. The solution of the fluid flow and the solid motion equations is advanced in time by staggerly using, respectively, the third‐order Runge‐Kutta and the implicit Newmark integration schemes. The stability and the robustness of the proposed method have been demonstrated by analyzing 5 challenging problems. For these problems, the numerical results have been found to agree well with their analytical and numerical solutions available in the literature. Effects of the support domain size and values assigned to the penalty parameter on the stability and the accuracy of the present method are also discussed.  相似文献   
998.
When solving unsteady computational fluid dynamics problems in aerodynamics with a gridless method, a cloud of points is usually required to be regenerated due to its accommodation to moving boundaries. In order to handle this problem conveniently, a fast dynamic cloud method based on Delaunay graph mapping strategy is proposed in this paper. A dynamic cloud method makes use of algebraic mapping principles and therefore points can be accurately redistributed in the flow field without any iteration. In this way, the structure of the gridless clouds is not necessarily changed so that the clouds regeneration can be avoided successfully. The spatial derivatives of the mathematical modeling of the flow are directly determined by using weighted least‐squares method in each cloud of points, and then numerical fluxes can be obtained. A dual time‐stepping method is further implemented to advance the two‐dimensional Euler equations in arbitrary Lagarangian–Eulerian formulation in time. Finally, unsteady transonic flows over two different oscillating airfoils are simulated with the above method and results obtained are in good agreement with the experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
999.
Due to climatic change, many Alpine glaciers have significantly retreated during the last century. In this study we perform the numerical simulation of the temporal and spatial change of Rhonegletscher, Swiss Alps, from 1874 to 2007, and from 2007 to 2100.  相似文献   
1000.
The transient two‐layer thin‐film planar flow is investigated theoretically in this study. The interplay among inertia, viscous and surface/interfacial tension is emphasized. It is found that the film and interface profiles, as well as the flow field, are strongly influenced by the viscosity ratio, velocity and film thickness ratios at inception, and the surface‐to‐interfacial tension ratio. The nonlinear stability of the steady state reveals the formation of a solitary wave after flow inception, which propagates in the form of a convective instability, with the steady state recovered only in the tail (upstream) region of the wave. In the presence of surface/interfacial tension, surface modulation appears, which grows in wavelength and amplitude with position. The flow is found to be particularly stable for higher viscosity of the lower film layer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号