首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   2篇
化学   16篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2016年   1篇
  2015年   1篇
  2007年   2篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 93 毫秒
11.
Herein, the synthesis of 1,2,3,4-tetrasubstituted benzenoid rings, motifs found in pharmaceutical, agrochemical, and natural products, is described.[1] In the past, the regioselective syntheses of such compounds have been a significant challenge. This work reports a method using substituted arynes derived from aryl(Mes)iodonium salts to access a range of densely functionalized 1,2,3,4-tetrasubstituted benzenoid rings. Significantly, it was found that halide substituents are compatible under these conditions, enabling post-synthetic elaboration via palladium-catalyzed coupling. This concise strategy is predicated on two regioselective events: 1) ortho- deprotonation of aryl(Mes)iodonium salts to generate a substituted aryne intermediate, and 2) regioselective trapping of said arynes, thereby improving previously reported reaction conditions to generate arynes at room temperature and in shorter reaction times. Density functional theory (DFT) computations and linear free energy relationship (LFER) analysis suggest the regioselectivity of deprotonation is influenced by both proximal and distal ring substituents on the aryne precursor. A competition experiment further reveals the role of arene substituents on relative reactivity of aryl(Mes)iodoniums as aryne precursors.  相似文献   
12.
Arylation via ortho C−H activation by the aid of directing groups has been explored recently by many researchers. Herein, a palladium-catalyzed C−H arylation using 8-aminoquinoline as a bidentate directing group has been developed. The reaction furnishes only C−H arylation, unlike previous methods where cyclization to corresponding isoquinolones is observed. More interestingly, sequential C−H functionalization was observed when methylacrylate and acrylonitrile was added; this led to C−H olefination with the aryl group, which was installed from the aryne precursor.  相似文献   
13.
The semiempirical AM1 SCF-MO method is used to study the benzyne mechanism for aromatic nucleophilic substitution of various m-substituted chlorobenzenes and 3-chloropyridine. The calculations predict that most of the fixed substituents studied here would induce the formation of 2,3-arynes through their electron-withdrawing resonance or inductive effects. The geometry and electronic structure of the 2,3- and 3,4-arynes investigated here, confirm the generally acceptedo-benzyne structure postulated for arynes. The sites of nucleophilic addition to arynes as predicted here are in fair agreement with expectation and experimental findings.  相似文献   
14.
We have developed an improved method for generating aryne from o-triazenylarylboronic acids. Unlike the previous method that required excess o-triazenylarylboronic acids as aryne precursors, we used corresponding boronates as limiting reagents, which resulted in high yields. By combining the formation of boronates and aryne generation through silica gel treatment in one-pot, we were able to effectively use a wide range of o-triazenylarylboronic acids in reactions with various arynophiles. This one-pot method was particularly suitable for transforming complex aryne precursors with different functional groups.  相似文献   
15.
Thermal isomerization of cyclobutaphenanthrene to o-quinodimethane was investigated. Sterically congested substituents or electron-donating substituents on the four-membered ring promoted the ring-opening, affording o-quinodimethane in a relatively stable form. Isolation of the newly prepared o-quinodimethane allowed its structural elucidation and investigation of its potential reactivities. Dual [4+2] cycloaddition of an aryne and o-quinodimethane afforded tetrabenzopentacene, demonstrating the synthetic application of the isolated compound.  相似文献   
16.
以邻溴苯酚为起始原料,经硅基化、水解和酯化反应得到苯炔前体邻-三甲硅基苯酚三氟甲磺酸酯,总收率75%。其结构经1HNMR,13CNMR,19FNMR和IR表征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号