首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1250篇
  免费   183篇
  国内免费   135篇
化学   738篇
晶体学   13篇
力学   251篇
综合类   38篇
数学   207篇
物理学   321篇
  2024年   4篇
  2023年   21篇
  2022年   69篇
  2021年   95篇
  2020年   79篇
  2019年   52篇
  2018年   50篇
  2017年   42篇
  2016年   66篇
  2015年   61篇
  2014年   60篇
  2013年   93篇
  2012年   56篇
  2011年   60篇
  2010年   45篇
  2009年   77篇
  2008年   68篇
  2007年   57篇
  2006年   64篇
  2005年   55篇
  2004年   46篇
  2003年   46篇
  2002年   49篇
  2001年   30篇
  2000年   27篇
  1999年   31篇
  1998年   19篇
  1997年   19篇
  1996年   29篇
  1995年   16篇
  1994年   9篇
  1993年   11篇
  1992年   8篇
  1991年   8篇
  1990年   1篇
  1989年   6篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1984年   11篇
  1979年   1篇
  1959年   1篇
  1957年   4篇
排序方式: 共有1568条查询结果,搜索用时 15 毫秒
41.
A back propagation artificial neural network (BPANN) prediction model for warpage of injection-molded polypropylene was developed based on an orthogonal design method. The BPANN model was trained by the input and output data obtained from the moldflow software platform simulations. It is proved that the BPANN model can predict the warpage with reasonable accuracy. Utilizing the BPANN model, the effects of the process parameters, packing pressure (Pp), melt temperature (Tme), mold temperature (Tmo), packing time (tp), cooling time (tc), and fill pressure (pf), on the warpage were investigated. The most important process parameter affecting the warpage was Pp, and the second most important was Tme. The rest of the process parameters, Tmo, tp, tc, and pf, were found to be relatively less influential. Warpage increased with elevating Tmo. In contrast, an increase in Pp and Tme caused the warpage to decrease.  相似文献   
42.
This paper presents a review of procedural steps and implementation techniques used in the development of artificial intelligence models, generally referred to as artificial neural networks (ANNs), within the water resources domain. It focusses on identifying different areas wherein ANNs have found application thereby elucidating its advantages and disadvantages as well as various challenges encountered in its use. Results from this review provide useful insights into how the performance of ANNs can be improved and potential areas of application that are yet to be explored in hydrological modeling. Recommendations for Resource Managers
  • Development of integrated and hybrid artificial intelligent tools is critical to achieving improved forecasts in hydrological modeling studies.
  • Further research into comprehending the internal mechanisms of neural networks is required to obtain a practical meaning of each network component deployed to solve real‐world problems.
  • More robust optimization techniques and tools like differential evolution, particle swarm optimization and deep neural nets, are yet to be fully explored in the water resources analysis, and should be given more attention to enhance neural networks aptitude for modeling complex and nonlinear hydrological processes.
  相似文献   
43.
Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase-based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy-efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V-nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V-nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V-nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one-CO (lo-CO) and multi-CO (hi-CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well-defined state for substrate- or intermediate-trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase-catalyzed reactions.  相似文献   
44.
Allostatic load (AL) is a complex clinical construct, providing a unique window into the cumulative impact of stress. However, due to its inherent complexity, AL presents two major measurement challenges to conventional statistical modeling (the field's dominant methodology): it is comprised of a complex causal network of bioallostatic systems, represented by an even larger set of dynamic biomarkers; and, it is situated within a web of antecedent socioecological systems, linking AL to differences in health outcomes and disparities. To address these challenges, we employed case‐based computational modeling (CBM), which allowed us to make four advances: (1) we developed a multisystem, 7‐factor (20 biomarker) model of AL's network of allostatic systems; (2) used it to create a catalog of nine different clinical AL profiles (causal pathways); (3) linked each clinical profile to a typology of 23 health outcomes; and (4) explored our results (post hoc) as a function of gender, a key socioecological factor. In terms of highlights, (a) the Healthy clinical profile had few health risks; (b) the pro‐inflammatory profile linked to high blood pressure and diabetes; (c) Low Stress Hormones linked to heart disease, TIA/Stroke, diabetes, and circulation problems; and (d) high stress hormones linked to heart disease and high blood pressure. Post hoc analyses also found that males were overrepresented on the High Blood Pressure (61.2%), Metabolic Syndrome (63.2%), High Stress Hormones (66.4%), and High Blood Sugar (57.1%); while females were overrepresented on the Healthy (81.9%), Low Stress Hormones (66.3%), and Low Stress Antagonists (stress buffers) (95.4%) profiles. © 2015 Wiley Periodicals, Inc. Complexity 21: 291–306, 2016  相似文献   
45.
46.
A virtual‐characteristic approach is developed for thermo‐flow with finite‐volume methodology in which a multidimensional characteristic (MC) scheme is applied along with artificial compressibility. To obtain compatibility equations and pseudo‐characteristics, energy equation is taken into account in the MC scheme. With this inherent upwinding of convective fluxes, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of the MC scheme lies in its faster convergence rate with respect to the averaging scheme that is found to exhibit substantial delays in convergence. As benchmarks, forced and mixed convections in a cavity and in flow over cylinder and between parallel plates are examined for a wide range of Reynolds, Grashof, and Prandtl numbers. The MC and averaging schemes are applied for simulation purposes. Results show the better performance of the MC scheme in forced and mixed convections. Results confirm the robustness of the MC scheme in terms of accuracy and convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
47.
In this short note we describe a simple extension to the multi‐material shock‐capturing algorithm presented in (J. Comput. Phys. 2007; 223 :262–297) that can be used to maintain sharp material interfaces. The method takes the form of an artificial compression which is designed so that the material indicator jumps across only a few cells but which does not excite physical instabilities in the flow. The advantages of the approach include its simplicity and flexibility in that it provides a parameter that effectively determines the captured interface thickness. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
48.
A brief outline of various data handling methods, from linear learning machines, principal component analysis, experimental design, and modeling to visualization, optimization, and validation together with a personal view on the historical development of the use of these methods, is given. Some future trends in handling chemical data are proposed as well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
49.
50.
Over the past two decades, the spatiotemporal analysis of fluorescently labeled single RNA species has provided a broad insight into the synthesis, localization, degradation, and transport of RNA. To elucidate the dynamic behavior of functional RNAs in living cells, researchers throughout the world have proposed numerous fluorometric strategies for intracellular RNA imaging. Because, like most other biological molecules, RNA is intrinsically nonfluorescent, the development of methods for the labeling of RNAs of interest with fluorescent molecules is essential. Several artificial tag sequences have been attached onto the 3′ end of target RNAs and used as scaffolds for interacting with their fluorescent counterparts. In this Personal Account, we focus on the methods that have been developed to show how RNAs expressed in cells can be labeled and visualized by fluorescent proteins, small molecules, or nucleic acids. Each of these methods is designed to increase the sensitivity and specificity for imaging or to decrease the background fluorescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号