首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5829篇
  免费   753篇
  国内免费   128篇
化学   6599篇
晶体学   53篇
综合类   5篇
物理学   53篇
  2023年   80篇
  2022年   105篇
  2021年   140篇
  2020年   248篇
  2019年   180篇
  2018年   99篇
  2017年   98篇
  2016年   241篇
  2015年   270篇
  2014年   277篇
  2013年   361篇
  2012年   369篇
  2011年   372篇
  2010年   347篇
  2009年   368篇
  2008年   440篇
  2007年   476篇
  2006年   351篇
  2005年   358篇
  2004年   385篇
  2003年   319篇
  2002年   86篇
  2001年   87篇
  2000年   67篇
  1999年   102篇
  1998年   104篇
  1997年   83篇
  1996年   74篇
  1995年   86篇
  1994年   34篇
  1993年   17篇
  1992年   18篇
  1991年   10篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1975年   4篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有6710条查询结果,搜索用时 0 毫秒
131.
It has been proven qualitatively by a number of authors using variable temperature NMR experiments that most metal carbonyl complexes are nonrigid. A quantitative determination of the ligand exchange frequency ve is often achieved by a line shape analysis or by measurement of the transverse relaxation time T2 using the Carr-Purcell method. In the case of a “very fast” exchange, however, both methods prove unsuccessful. It is shown in this study that a simultaneous fit of IR or Raman spectra on the one hand and NMR spectra on the other can make possible the determination of ve for the “very fast” exchange and can also facilitate the determination of ve in “slow” and “medium” exchange cases considerably. The ligand exchange frequency thus found for Fe(CO)5, 1.1 × 1010s?1, is unexpectedly high; comparison with variable temperature measurements on solid Fe(CO)5, yields similar energy barriers. A mechanism of exchange closely related to the “Berry mechanism” is proposed. Finally the consequences of this surprisingly large ligand exchange rate are discussed with respect to IR band assignments for molecular “fragments” M(CO)x (where x=coordination number, and M is a transition metal, typically lanthanoid or actinoid).  相似文献   
132.
A variety of optically enriched amines have been obtained by addition of aryllithium reagents to aromatic imines using N,N′-tetramethylcyclohexane-1,2-diamine as chiral ligands. Enantiomeric excesses up to 90% could be obtained.  相似文献   
133.
134.
135.
Phosphonio‐benzo[c]phospholides with an additional phosphonium ylide substituent in 3‐position were synthesized by deprotonation of appropriately substituted 1, 3‐bis‐phosphonio benzophospholide cations and characterized by spectroscopic and analytical data. The ability of these molecules to act as bidentate P, C‐chelating ligands to transition metal atoms was demonstrated in the reactions with [W(CO)4(norbornadiene)] and [MCl2(cyclooctadiene)] (M = Pd, Pt). The PdII and PtII complexes are distinguished by a strong inclination towards addition of H2O to the 10π‐electron system of the ligand. The molecular structures of a W0 complex with a P, C‐chelating ylidyl‐phosphonio‐benzophospholide ligand and of the product resulting from H2O‐addition to a corresponding PtII complex were determined. The structural parameters of the W0 complex provide evidence for the presence of substantial steric strain around the metal atom.  相似文献   
136.
Sulfur Dioxide as Ligand and Synthon. XIII. Reactions of Isocyanide-tris(triphenylphosphane)nickel(0) Complexes with Sulfur Dioxide and N-p-tolylsulfinylamine Reactions of the isocyanide-tris(triphenylphosphane)-nickel(0) complexes [(RNC)Ni(PPh3)3] (R = tBu, Cy, PhCH2, p-TosCH2) with SO2 and p-TolNSO are described. The sulfur dioxide and N-p-tolylsulfinylamine complexes obtained by PPh3 ligand substitution have been characterized by means of i.r. and 31P n.m.r. spectra. The X-ray crystal structure of [(Ph3P)2(CyNC)Ni(SO2)] · 0.5 PhMe and (Ph3P)(tBuNC)Ni(η2-p-TolNSO) have been determined.  相似文献   
137.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   
138.
Reaction of cis-[PtCl2(AsPh3)2] with excess sodium sulfide in benzene gave the triphenylarsine analogue of the well-known metalloligand [Pt2(μ-S)2(PPh3)4] as an orange solid.The compound was characterised by detailed mass spectrometry studies, and by conversion to various alkylated and metallated derivatives.The sulfide ligands in [Pt2(μ-S)2(AsPh3)4] are less basic than the triphenylphosphine analogue, and the complex gives a relatively weak [M+H]+ ion in the positive-ion electrospray (ESI) mass spectrum, compared with the phosphine analogue.Methylation of an equimolar mixture of [Pt2(μ-S)2(PPh3)4] and [Pt2(μ-S)2(AsPh3)4] with MeI gave the species [Pt2(μ-S)(μ-SMe)(AsPh3)4]+ and [Pt2(μ-SMe)2(PPh3)3I]+, indicating a reduced tendency for the sulfide of [Pt2(μ-S)(μ-SMe)(AsPh3)4]+ to undergo alkylation.The lability of the arsine ligands is confirmed by the reaction of an equimolar mixture of [Pt2(μ-S)2(PPh3)4] and [Pt2(μ-S)2(AsPh3)4] with n-butyl chloride, giving [Pt2(μ-S)(μ-SBu)(EPh3)4]+ (E = P, As), which with Me2SO4 gave a mixture of [Pt2(μ-SMe)(μ-SBu)(PPh3)4]2+ and [Pt2(μ-SMe)(μ-SBu)(AsPh3)3Cl]+.Reactivity towards 1,2-dichloroethane follows a similar pattern.The formation and ESI MS detection of mixed phosphine-arsine {Pt2S2} species of the type[Pt2(μ-S)2(AsPh3)n(PPh3)4−n] is also discussed. Coordination chemistry of [Pt2(μ-S)2(AsPh3)4] towards a range of metal-chloride substrates, forming sulfide-bridged trinuclear aggregates, has also been probed using ESI MS, and found to be similar to the phosphine analogue. The X-ray crystal structure of [Pt2(μ-S)2(AsPh3)4Pt(cod)](PF6)2 (cod = 1,5-cyclo-octadiene) has been determined for comparison with the (previously reported) triphenylphosphine analogue. ESI MS is a powerful tool in exploring the chemistry of this system; in some cases the derivatising agent p-bromobenzyl bromide is used to convert sparingly soluble and/or poorly ionising {Pt2S2} species into soluble, charged derivatives for MS analysis.  相似文献   
139.
Reaction of the disulfide [HpicanS](2) (HpicanS is the carboxamide based on picolinate (pic) and o-mercaptoaniline (anS); the [] brackets are used to denote disulfides) with [VOCl(2)(thf)(2)] leads to reductive scission of the disulfide bond and formation of the mixed-valence (V(IV)/V(V)) complex anion [(OVpicanS)(2)mu-O](-) (1), with the dianionic ligand coordinating through the pyridine-N atom, the deprotonated amide-N atom, and thiophenolate-S atom. Reductive cleavage of the SbondS bond is also observed as [VCl(2)(tmeda)(2)] (tmeda=tetramethylethylenediamine) is treated with the disulfides [HsalanS](2) or [HvananS](2) (HsalanS and HvananS are the Schiff bases formed between o-mercaptoaniline and salicylaldehyde (Hsal) or vanillin (Hvan), respectively), yielding the V(III) complexes [VCl(tmeda)(salanS)] (2 a), or [VCl(tmeda)(vananS)] (2 b). The disulfide bond remains intact in the aerial reaction between [HsalanS](2) and [VCl(3)(thf)(3)] to yield the V(V) complex [VOCl[salanS](2)] (3), where (salanS)(2-) coordinates through the two phenolate and one of the imine functions. The S-S bond is also preserved as [VO(van)(2)] or [VO(nap)(2)] (Hnap=2-hydroxynaphthalene-1-carbaldehyde) is treated with bis(2-aminophenyl)disulfide, [anS](2), a reaction which is accompanied by condensation of the aldehyde and the diamine, and complexation of the resulting bis(Schiff bases) [HvananS](2) or [HnapanS](2) to form the complexes [VO[vananS](2)] (4 a) or [VO[napanS](2)] (4 b). In 4 a and 4 b, the phenolate and imine functions, and presumably also one of the disulfide-S atoms, coordinate to V(IV). 2-Mercaptophenyl-2'-pyridinecarboxamide (H(2)picanS) retains its identity in the presence of V(III); reaction between [VCl(3)(thf)(3)] and H(2)picanS yields [V[picanS](2)](-) (5). The dithiophenolate 2,6-bis(mercaptophenylthio)dimethylpyridine (6 a) is oxidized, mediated by VO(2+), to the bis(disulfide) octathiadiaza-cyclo-hexaeicosane 6 b. The relevance of these reactions for the speciation of vanadium under physiological conditions is addressed. [HNEt(3)]-1.0.5 NEt(3,) 3.3 CH(2)Cl(2), [HsalanS](2), [HNEt(3)]-5, and 6 b.4 THF have been characterized by X-ray diffraction analysis.  相似文献   
140.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号