首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   164篇
  国内免费   32篇
化学   859篇
综合类   3篇
物理学   54篇
  2024年   1篇
  2023年   10篇
  2022年   21篇
  2021年   25篇
  2020年   66篇
  2019年   42篇
  2018年   28篇
  2017年   25篇
  2016年   62篇
  2015年   75篇
  2014年   48篇
  2013年   47篇
  2012年   56篇
  2011年   55篇
  2010年   34篇
  2009年   27篇
  2008年   41篇
  2007年   53篇
  2006年   38篇
  2005年   38篇
  2004年   23篇
  2003年   32篇
  2002年   6篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1997年   16篇
  1996年   10篇
  1995年   7篇
  1993年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有916条查询结果,搜索用时 15 毫秒
11.
The incongruent solvation of M(I)4P6 species (M(I) = K, Rb, Cs) in liquid ammonia leads to a broad variety of polyphosphides such as P7(3-), P11(3-), and the putatively aromatic P4(2-) and P5(-), which we investigated by using NMR spectroscopy and single-crystal X-ray structure analysis. The structures of Cs2P4 x 2 NH3, (K@[18]crown-6)3K3(P7)2 x 10 NH3, Rb3P7 x 7 NH3, and (Rb@[18]crown-6)3P7 x 6 NH3 are discussed and compared. The electron localization function ELF is used in a comparison of the chemical bonding of various phosphorus species. The variances of the basin populations provide a well-established measure for electron delocalization and therefore aromaticity. While comparable variance is calculated for P4(2-) and P5(-) it is observed in the lone pairs rather than in the basin populations of the bonds as in the prototypical aromatic hydrocarbons such as benzene or the cyclopentadienide anion. For this behavior, the term "lone pair aromaticity" is proposed.  相似文献   
12.
1,8-dihydroxy-9-anthrone are tricyclic compounds with a ketone group in the middle ring and two hydroxyl groups substituted in the side-aromatic rings what results in formation of two intramolecular hydrogen bonds in which the oxygen atom from the ketone group is the proton acceptor. 1,8-dihydroxy-9-anthrones in which intramolecular proton transfer between C10 and CO in the middle ring occurs, can exist in a tautomeric keto-enol equilibrium. For anthralin, the most important representative of this group, this equilibrium has been studied previously, but it has not been studied for its derivatives. Substituents in the middle ring change the geometry of 1,8-dihydroxy-9-anthrones so they are also expected to affect the keto-enol equilibrium. It is also important to study the effect of intramolecular hydrogen bonds on the structure of both tautomeric forms. It was found that the nature of the substituent in the middle ring could affect the antioxidant properties of the investigated compound.  相似文献   
13.
裴晓琴  武海顺  张晓清  许兴友 《化学学报》2007,65(14):1357-1362
运用G03W程序, 在高精度理论水平(B3P86/6-311+G**)下, 对母体转烯(Hypostrophene)及其BCO衍生物的单态、三态、开壳层单态的Cope重排体系进行了理论研究: 对体系进行了相应的结构优化和频率计算, 并进一步计算了体系的重排势垒、反应能量、核独立化学位移值等理论参数. 文中首次提出具有四同芳香性的实例: 转烯的Cope重排过渡态. 计算同时表明BCO取代CH的行为使得进行Cope重排的反应物和过渡态的离域性、芳香性以及稳定性都得到很大的促进, 这可以从前线轨道的成键以及延伸方面得到合理的解释. 所得结果进一步验证了BCO基团的稳定性效应.  相似文献   
14.
As a prominent member of the vitamin E group, α-tocopherol is an important lipophilic antioxidant. It has a special oxidation chemistry that involves phenoxyl radicals, quinones and quinone methides. During the oxidation to the ortho-quinone methide, an intermediary zwitterion is formed. This aromatic intermediate turns into the quinone methide by simply rotating the initially oxidized, exocyclic methyl group into the molecule's plane. This initial zwitterionic intermediate and the quinone methide are not resonance structures but individual species, whose distinct electronic structures are separated by a mere 90° bond rotation. In this work, we hindered this crucial rotation, by substituting the affected methyl group with alkyl or phenyl groups. The alkyl groups slowed down the conversion to the quinone methide by 18-times, while the phenyl substituents, which additionally stabilize the zwitterion electronically, completely halted the conversion to the quinone methide at −78 °C, allowing for the first time the direct observation of a tocopherol-derived zwitterion. Employing a 13C-labeled model, the individual steps of the oxidation sequence could be observed directly by NMR, and the activation energy for the rotation could be estimated to be approximately 2.8 kcal/mol. Reaction rates were solvent dependent, with polar solvents exerting a stabilizing effect on the zwitterion. The observed effects confirmed the central relevance of the rotation step in the change from the aromatic to the quinoid state and allowed a more detailed examination of the oxidation behavior of tocopherol. The concept that a simple bond rotation can be used to switch between an aromatic and an anti-aromatic structure could find its use in molecular switches or molecular engines, driven by the specific absorption of external energy.  相似文献   
15.
Designing and synthesizing a stable compound with a planar tetracoordinate silicon (ptSi) center is a challenging goal for chemists. Here, a series of potential aromatic ptSi compounds composed of four conjugated rings shared by a centrally embedded Si atom are theoretically designed and computationally verified. Both Born–Oppenheimer molecular dynamics (BOMD) simulations and potential energy surface scannings verify the high stability and likely existence of these compounds, particularly Si-16-5555 (SiN4C8H8) with 16 π electrons, under standard ambient temperature and pressure. Notably, the Hückel aromaticity rule, which works well for single rings, is inconsistent with the high stability of Si-16-5555 where the 16 p electrons are spread over four five-membered rings fused together. Bonding analyses show that the strong electron donation from the peripheral 12-membered conjugated ring with 16 π electrons to the vacant central atomic orbital Si 3pz leads to the stabilization for both the ptSi coordination and planar aromaticity. The partial occupation of Si 3pz results in the peculiar carbenoid-type behaviors for the amphoteric center. By modulating the electron density on the ring with substituent groups, we can regulate the nucleophilic and electrophilic properties of the central Si.  相似文献   
16.
Substituent effects of fused six, and five‐membered aromatic rings are investigated on the stability, aromaticity, charge distribution, nucleophilic (N), and electrophilic (ω) characters of 20 singlet (s) and triplet (t) Hammick carbenes, at B3LYP/AUG‐cc‐pVTZ and M06‐2X/AUG‐cc‐pVTZ. Results display: (a) The higher thermodynamic and kinetic stability is revealed by carbenes situated between two nitrogen and/or two oxygen heteroatoms of two substituted rings, in a “W” arrangement toward the carbenic center; (b) Regardless of the arrangement, the order of thermodynamical and kinetic stabilization for fused rings is pyrrole > furan > thiophene > phosphole. (c) The substituted Hammick carbenes with two fused heterocyclics, in a given arrangement, show more stability than unsubstituted Hammick carbene; (d) While two five‐membered heterocyclic rings stabilize their corresponding substituted carbenes, two benzene rings destabilize Hammick carbene; (e) In all structures, s species emerges as ground state, exhibiting more stability than its t state; (f) The scrutinized s carbenes show higher N and lower ω than their corresponding t states.  相似文献   
17.
周立新  章永凡  黄昕  李俊 《结构化学》1999,18(6):456-462
在RHF/6-311G水平优化得到3,4-二硒方酸(3,4-二氢硒基-3-环丁烯-1,2-二酮)3 种平面构象异构体的平衡几何构型。进一步用MP2(full)/6-311G//RHF//6-311G方法计算单点能量,发现ZZ型异构体是能量最低构象,且ZZ和ZE型能量非常接近。用优化的最稳定构象ZZ型异构体在RHF/6-311G//RHF/6-311G、RHF/6-311+ G//RHF/6-311+ G、MP2(full)/6-311+ G//RHF/6-311+ G 和B3LYP/6-311+ G//B3LYP/6-311+ G水平计算其气相酸性(ΔG°)和同键反应芳香性稳定化能(HASE)。用基团加和法(group increm ent ap-proach ) 在 RHF/6-311 + G//RHF/6-311 + G 和 B3LYP/6-311 + G//B3LYP/6-311+ G水平计算其磁化率增量(Λ)。计算结果指出标题化合物的同键反应芳香性稳定化能和磁化率增量均为负值,表明它具有芳香性,实现了标题化合物芳香性的几何、能量和磁性的判定。  相似文献   
18.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   
19.
Ruthenocene‐type hybrid complexes with N‐fused porphyrinato ligands, [Ru(NFp)Cp] (NFp=N‐fused porphyrin, Cp=cyclopentadienyl), have been prepared and characterized by NMR and UV/Vis/NIR spectroscopy, cyclovoltammetry, and X‐ray crystallography. [Ru(NFp)Cp] is a common low‐spin ruthenium(II) complex and shows strong aromaticity. The Ru–Cp distance (1.833 Å) in [Ru(NFp)Cp] is comparable to that in [RuCp2] (1.840 Å). DFT calculations on [Ru(NFp)Cp] showed the unequivocal contribution of the RuCp moiety as well as the NFp moiety to both the HOMO and LUMO, constructing a three‐dimensional d–π conjugated system. The HOMO–LUMO gaps of [Ru(NFp)Cp] are insensitive to the substituents on the NFp ligand, which is illustrated spectroscopically as well as theoretically. This is in sharp contrast to the ligand precursor, the N‐fused porphyrin, in which the HOMO–LUMO gap is affected by substituents in a similar manner to standard porphyrins and related macrocycles.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号