首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1991篇
  免费   86篇
  国内免费   312篇
化学   2123篇
晶体学   19篇
力学   13篇
综合类   11篇
数学   1篇
物理学   222篇
  2024年   11篇
  2023年   24篇
  2022年   72篇
  2021年   80篇
  2020年   92篇
  2019年   52篇
  2018年   44篇
  2017年   50篇
  2016年   75篇
  2015年   69篇
  2014年   67篇
  2013年   177篇
  2012年   90篇
  2011年   83篇
  2010年   71篇
  2009年   77篇
  2008年   80篇
  2007年   94篇
  2006年   82篇
  2005年   98篇
  2004年   82篇
  2003年   81篇
  2002年   74篇
  2001年   49篇
  2000年   49篇
  1999年   43篇
  1998年   54篇
  1997年   44篇
  1996年   40篇
  1995年   22篇
  1994年   23篇
  1993年   29篇
  1992年   29篇
  1991年   16篇
  1990年   13篇
  1989年   23篇
  1988年   24篇
  1987年   14篇
  1986年   16篇
  1985年   16篇
  1984年   23篇
  1983年   10篇
  1982年   20篇
  1981年   20篇
  1980年   16篇
  1979年   16篇
  1978年   13篇
  1977年   8篇
  1976年   9篇
  1973年   8篇
排序方式: 共有2389条查询结果,搜索用时 0 毫秒
61.
The spectra of copper(II)–ammonia solutions in 2 mol-kg–1 NH4NO3(aq) were recorded as a function of pH with a new UV–visible flow cell, capable of operating at conditions up to 325°C and 300 bars. Equilibrium constants for the formation of copper(II)–ammonia complexes Cu(NH3)n 2+, 1 n 4, from 30 to 150°C were determined by evolving factor analysis and nonlinear least-squares regression. Measurements at higher temperatures were limited by thermal decomposition of NH4NO3(aq). The formation constants of Cu(NH3)n 2+ decrease with temperature, consistent with extrapolations of literature data from measurements below 100°C. Measurements above 150°C were carried out in 0.5 mol-kg–1 CF3SO3H (aq), at the very high ammonia concentrations required to avoid the precipitation of CuO(s). The spectra are consistent with Cu(NH3)4 2+ as the predominant species, based on extrapolations of peak maxima and molar absorptivities from lower temperatures. Shifts in the spectra of Cu2+ and the Cu(NH3)n 2+ species to higher wavelength and increases in molar absorbance with increasing temperature are discussed in terms of the structure of the complexes.  相似文献   
62.
A novel chemically modified magnetic hydroxyapatite (MHAp) was prepared and used as support and stabilizer for the synthesis of silver nanoparticles. First, 1,4‐diazabicyclo[2.2.2]octane (DABCO) was successfully grafted onto the surface of MHAp, and then silver nanoparticles were homogeneously loaded on mesoporous MHAp‐DABCO (ionic‐tagged MHAp) nanocomposite by in situ chemical reduction of silver nitrate using sodium borohydride. The structure and properties of the resulting MHAp‐DABCO‐Ag nanocomposite were confirmed using various techniques. The catalytic activity of ionic‐tagged MHAp‐Ag nanocatalyst was investigated for the hydrogenation reaction of nitroarenes in aqueous media. The results reveal that the Ag‐containing inorganic–organic nanocomposite is highly efficient for the reduction of a wide range of aromatic nitro compounds under green conditions. The superparamagnetic nature of the nanocatalyst leads to its being readily removed from solution via application of a magnetic field, and it can be easily stored and reused.  相似文献   
63.
A novel aqueous in situ derivatization procedure with propyl chloroformate (PCF) for the simultaneous, quantitative analysis of Δ9‐tetrahydrocannabinol (THC), 11‐hydroxy‐Δ9‐tetrahydrocannabinol (OH‐THC) and 11‐nor‐Δ9‐tetrahydrocannabinol‐carboxylic acid (THC‐COOH) in human blood and urine is proposed. Unlike current methods based on the silylating agent [N,Obis(trimethylsilyl)trifluoroacetamide] added in an anhydrous environment, this new proposed method allows the addition of the derivatizing agent (propyl chloroformate, PCF) directly to the deproteinized blood and recovery of the derivatives by liquid–liquid extraction. This novel method can be also used for hydrolyzed urine samples. It is faster than the traditional method involving a derivatization with trimethyloxonium tetrafluoroborate. The analytes are separated, detected and quantified by gas chromatography–mass spectrometry in selected ion monitoring mode (SIM). The method was validated in terms of selectivity, capacity of identification, limits of detection (LOD) and quantification (LOQ), carryover, linearity, intra‐assay precision, inter‐assay precision and accuracy. The LOD and LOQ in hydrolyzed urine were 0.5 and 1.3 ng/mL for THC and 1.2 and 2.6 ng/mL for THC‐COOH, respectively. In blood, the LOD and LOQ were 0.2 and 0.5 ng/mL for THC, 0.2 and 0.6 ng/mL for OH‐THC, and 0.9 and 2.4 ng/mL for THC‐COOH, respectively. This method was applied to 35 urine samples and 50 blood samples resulting to be equivalent to the previously used ones with the advantage of a simpler method and faster sample processing time. We believe that this method will be a more convenient option for the routine analysis of cannabinoids in toxicological and forensic laboratories.  相似文献   
64.
Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large‐scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass‐spectrometry‐based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass‐spectrometry‐based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass‐spectrometry‐based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single‐cell lipidomics, flux‐based lipidomics and multiomics technologies were also reviewed.  相似文献   
65.
Porous multipod Cu2O microcrystals were found to be an efficient, highly recyclable and eco‐friendly catalyst for the cross‐coupling reactions of aryl halides and terminal alkynes with high yields in aqueous media. Noteworthy, the Cu2O catalyst can be reused for several times without significant decrease in catalytic activity.  相似文献   
66.
为了研究溶剂预处理对低阶煤的固有大分子结构的影响,本研究对锡林郭勒褐煤(XLL)和神府次烟煤(SFC)分别进行了四氢呋喃(THF)索氏抽提、二硫化碳/N-甲基-2-吡咯烷酮(CS2/NMP)混合溶剂抽提及热溶处理,并对所得抽余煤进行了傅里叶红外漫反射光谱分析(DRIFT)、热重分析(TGA)、压汞法分析(MI)和溶胀度测定。结果表明,溶剂抽提导致煤大分子结构重排和再缔合。其中,THF索式抽提和CS2/NMP混合溶剂抽提可以改变非共价键交联作用,特别是氢键作用分布,从而不同程度地松弛煤大分子结构。然而,高温溶剂热溶处理主要促进了煤大分子的共价键交联,尤其是对锡林郭勒褐煤(XLL)。所有抽取煤的溶胀都受Fickian扩散控制,且所有抽取煤的溶胀活化能都低于原煤。  相似文献   
67.
Key advances within the past 10 years have transformed copper‐mediated radical polymerization from a technique which was not very tolerant of protic media into a range of closely related processes capable of controlling the polymerization of a wide range of monomers in pure water at ppm catalyst loadings. This approach has afforded water‐soluble macromolecules of desired molecular weight, architecture, and chemical functionality, with applications ranging from drug delivery to oil processing. In this Review we highlight and critically evaluate the synthetic methods that have been developed to control radical polymerization in water by using copper complexes as well as identify future areas of interest and challenges still to be overcome.  相似文献   
68.
李非  毛胜雪  孙越  吕成伟  安悦 《应用化学》2018,35(10):1201-1207
绿色、简便、高效的催化四组分反应合成吡喃并[2,3-c]吡唑类杂环化合物是当今有机化学领域的研究热点。 本文发展了在水与聚乙二醇(PEG-200)的混合液中,廉价易得的磷酸氢二钾(K2HPO4·3H2O)催化乙酰乙酸乙酯、水合肼、芳香醛和丙二腈的多组分“一锅法”反应,合成一系列1,4-二氢吡喃并[2,3-c]吡唑-5-腈衍生物,产率为88%~98%。 该方法避免了使用复杂昂贵的催化剂和繁琐的纯化过程。  相似文献   
69.
李蕾  孙鹏  段雪 《应用化学》2001,18(6):0-0
水滑石;水分散体系;层状结构;Mg-Al-CO3水分散液的稳定性及流变性  相似文献   
70.
微波辅助聚乙二醇-硫酸铵双水相体系萃取铂、钯及非等温动力学  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号