首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10649篇
  免费   494篇
  国内免费   1224篇
化学   11364篇
晶体学   46篇
力学   66篇
综合类   42篇
数学   26篇
物理学   823篇
  2024年   27篇
  2023年   72篇
  2022年   167篇
  2021年   167篇
  2020年   258篇
  2019年   245篇
  2018年   252篇
  2017年   322篇
  2016年   413篇
  2015年   306篇
  2014年   369篇
  2013年   1042篇
  2012年   462篇
  2011年   454篇
  2010年   446篇
  2009年   499篇
  2008年   553篇
  2007年   571篇
  2006年   552篇
  2005年   599篇
  2004年   569篇
  2003年   474篇
  2002年   433篇
  2001年   335篇
  2000年   364篇
  1999年   304篇
  1998年   285篇
  1997年   287篇
  1996年   302篇
  1995年   227篇
  1994年   222篇
  1993年   202篇
  1992年   173篇
  1991年   58篇
  1990年   34篇
  1989年   35篇
  1988年   42篇
  1987年   23篇
  1986年   23篇
  1985年   19篇
  1984年   34篇
  1983年   11篇
  1982年   26篇
  1981年   24篇
  1980年   15篇
  1979年   15篇
  1978年   13篇
  1977年   8篇
  1976年   9篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
61.
Amphiphilic block copolymers of poly(acrylic acid‐b‐butyl acrylate) were prepared by reversible addition–fragmentation chain transfer polymerization in a one‐pot reaction. These copolymers were characterized by NMR, static and dynamic light scattering, tensiometry, and size exclusion chromatography. The aggregation characteristics of the copolymers corresponded to those theoretically predicted for a star micelle. In a butyl acrylate and methyl methacrylate emulsion polymerization, low amounts of these copolymers could stabilize latices with solid contents up to 50%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 684–698, 2003  相似文献   
62.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   
63.
The sterically stabilized emulsion polymerization of styrene initiated by a water‐soluble initiator at different temperatures has been investigated. The rate of polymerization (Rp) versus conversion curve shows the two non‐stationary‐rate intervals typical for the polymerization proceeding under non‐stationary‐state conditions. The shape of the Rp versus conversion curve results from two opposite effects—the increased number of particles and the decreased monomer concentration at reaction loci as the polymerization advances. At elevated temperatures the monomer emulsion equilibrates to a two‐phase or three‐phase system. The upper phase is transparent (monomer), and the lower one is blue colored, typical for microemulsion. After stirring such a multiphase system and initiation of polymerization, the initial coarse polymer emulsion was formed. The average size of monomer/polymer particles strongly decreased up to about 40% conversion and then leveled off. The initial large particles are assumed to be highly monomer‐swollen particles formed by the heteroagglomeration of unstable polymer particles and monomer droplets. The size of the “highly monomer” swollen particles continuously decreases with conversion, and they merge with the growing particles at about 40–50% conversion. The monomer droplets and/or large highly monomer‐swollen polymer particles also serve as a reservoir of monomer and emulsifier. The continuous release of nonionic (hydrophobic) emulsifier from the monomer phase increases the colloidal stability of primary particles and the number of polymer particles, that is, the particle nucleation is shifted to the higher conversion region. Variations of the square and cube of the mean droplet radius with aging time indicate that neither the coalescence nor the Ostwald ripening is the main driving force for the droplet instability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 804–820, 2003  相似文献   
64.
Conductive composite films of poly(styrene‐con‐butylacrylate) copolymers filled with low‐density, Ni‐plated core‐shell polymeric particles were prepared and their behaviors of positive temperature coefficient of resistance (PTCR) were investigated. When the conductive fillers in the composite film were loaded beyond the critical volume, 10 up to 25 vol %, composite films exhibited a unique electrical resistant transition behavior, which the electrical resistance rapidly increased by several orders of magnitude at the critical temperature. The PTCR transition temperature, in general, occurred before the glass transition temperature of polymer matrix. Further increased the conductive filler loading to 30 vol %, the overpacked conduction paths were formed in the entire composite and the PTCR effects became blurred. While the composite film treated with thermal cycle several times from room temperature up to 120 °C, the electrical resistivity increased accompanied with the shift of the PTCR transition to lower temperature. The reason might have been caused by the formed interfacial cracks within the composite film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 322–329, 2007  相似文献   
65.
Various phase behavior of blends of poly(vinyl ether)s with homologous acrylic polymers (polymethacrylates or polyacrylates) were examined using differential scanning calorimetry, optical microscopy (OM), and Fourier‐transformed infrared spectroscopy. Effects of varying the pendant groups of either of constituent polymers on the phase behavior of the blends were analyzed. A series of interestingly different phase behavior in the blends has been revealed in that as the pendant group in the acrylic polymer series gets longer, polymethacrylate/poly(vinyl methyl ether) (PVME) blends exhibit immiscibility, upper critical solution temperature (UCST), and miscibility, respectively. This study found that the true phase behavior of poly(propyl methacrylate)/PVME [and poly(isopropyl methacrylate)/PVME)] blend systems, though immiscible at ambient, actually displayed a rare UCST upon heating to higher temperatures. Similarly, as the methyl pendant group in PVE is lengthened to ethyl (i.e., PVME replaced by PVEE), phase behavior of its blends with series of polymethacrylates or polyacrylates changes correspondingly. Analyses and quantitative comparisons on four series of blends of PVE/acrylic polymer were performed to thoroughly understand the effects of pendant groups in either polyethers (PVE's) or acrylic polymers on the phase behavior of the blends of these two constituents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1521–1534, 2007  相似文献   
66.
The phase behavior and crystallization of graft copolymers consisting of poly(n‐hexyl methacrylate) (PHMA) as an amorphous main chain and poly(ethylene glycol) (PEG) as crystallizable side chains (HMAx with 15 ≤ x ≤ 73, where x represents the weight percentage of PEG) were investigated. Small‐angle X‐ray scattering profiles measured above the melting temperature of PEG suggested that a microdomain structure with segregated PHMA and PEG domains was formed in HMA40 and HMA46. This phase behavior was qualitatively described by a calculated phase diagram based on the mean‐field theory. Because of the segregation of PEG into microdomains, the crystallization temperature of the PEG side chains in HMAx was higher than that in poly(methyl acrylate)‐graft‐poly(ethylene glycol) having a similar value of x, which was considered to be in a disordered state above the melting temperature. In HMAx with x ≤ 40, PEG crystallization was strongly restricted, probably because the PEG microdomains were isolated in the PHMA matrix. As a result, the growth of PEG spherulite was not observed because the PEG crystallization occurred after vitrification of the PHMA segregated domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 129–137, 2007  相似文献   
67.
Homopolymerization of octadecene‐1 at different reaction conditions has been studied. Significant chain running can be seen at higher polymerization temperatures. Interestingly, insertion of octadecene‐1 into a sterically hindered nickel‐cation/carbon (secondary) bond is observed. The microstructure of the polymer was established using NMR spectroscopy. The effects of chain running on polymer melting, crystallization behavior, and dynamic mechanical thermal properties were studied using DSC and DMTA. The extent of chain running (i.e., 2,ω‐, 1,ω‐enchainments) decreases with an increase in the carbon number of α‐olefins. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 191–210, 2007  相似文献   
68.
Three new copolymers, namely poly(fluorenevinylene‐alt‐naphthalenevinylene) ( N ), poly(fluorenevinylene‐alt‐anthracenevinylene) ( A ) and poly(fluorenevinylene‐alt‐pyrenevinylene) ( P ), were synthesized by Heck coupling of 9,9‐dihexyl‐2, 7‐divinylfluorene with a polynuclear aromatic dibromide. The 9,10‐disubstituted anthracene was obtained exclusively for A while N and P were obtained as a mixture of two isomers with predominant the 1,4‐disubstituted naphthalene and 1,8‐disubstituted pyrene, respectively. The polymers were soluble in common organic solvents and decomposed above 370 °C. Their glass transition temperature increased from 58 to 110 °C by increasing the number of the phenyl rings of the polynuclear aromatic moiety. Rather high‐efficiency blue and blue‐greenish photoluminescence (PL) of these copolymers in solution was largely decreased in their films, indicating the presence of concentration quenching in the solid state. The OLED using these polymers demonstrated green EL in the case of copolymers N and A , and red EL in the P derivative with ηEL = 0.26–0.31%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4661–4670, 2007  相似文献   
69.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   
70.
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号