首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4285篇
  免费   676篇
  国内免费   390篇
化学   4994篇
晶体学   15篇
力学   27篇
综合类   23篇
数学   31篇
物理学   261篇
  2024年   14篇
  2023年   102篇
  2022年   369篇
  2021年   364篇
  2020年   342篇
  2019年   208篇
  2018年   189篇
  2017年   211篇
  2016年   321篇
  2015年   276篇
  2014年   301篇
  2013年   368篇
  2012年   292篇
  2011年   244篇
  2010年   218篇
  2009年   229篇
  2008年   197篇
  2007年   178篇
  2006年   166篇
  2005年   129篇
  2004年   128篇
  2003年   108篇
  2002年   60篇
  2001年   45篇
  2000年   39篇
  1999年   54篇
  1998年   39篇
  1997年   32篇
  1996年   25篇
  1995年   23篇
  1994年   16篇
  1993年   8篇
  1992年   7篇
  1991年   9篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1971年   1篇
排序方式: 共有5351条查询结果,搜索用时 0 毫秒
951.
建立了高效液相色谱-串联质谱(HPLC-MS/MS)同时测定生猪尿液中喹诺酮类、磺胺类、磺胺增效剂、四环素类、林可胺类、大环内脂共29种限用兽药残留量的检测方法。试样经乙酸铵和EDTA-Na缓冲液提取,HLB固相萃取小柱净化后,HPLC-MS/MS进行测定,其中β-受体激动剂类用内标法定量,其余兽药用外标法定量。在电喷雾电离正离子模式下,以多反应监测(MRM)方式采集数据进行定性与定量分析。29种兽药在猪尿基质中标准曲线的线性系数(r)均大于0.99,3个不同加标水平下的平均回收率为58%~108%,日内相对标准偏差(RSD)为1.9%~18.9%,日间RSD为3.4%~20.9%;定量下限(LOQ,S/N≥10)为1.0~10.0μg/L。该方法经济、高效、可靠,可用于生猪屠宰前兽药多残留的快速检测。  相似文献   
952.
A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein‐α (FAP‐α), a protease specifically expressed on the surface of cancer‐associated fibroblasts. The CAP self‐assembled into fiber‐like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug‐loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP‐NPs) upon FAP‐α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers‐like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug‐loaded CAP‐NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy.  相似文献   
953.
The currently available techniques for molecular imaging capable of reaching atomic resolution are limited to low temperatures, vacuum conditions, or large amounts of sample. Quantum sensors based on the spin‐dependent photoluminescence of nitrogen‐vacancy (NV) centers in diamond offer great potential to achieve single‐molecule detection with atomic resolution under ambient conditions. Diamond nanoparticles could also be prepared with implanted NV centers, thereby generating unique nanosensors that are able to traffic into living biological systems. Therefore, this technique might provide unprecedented access and insight into the structure and function of individual biomolecules under physiological conditions as well as observation of biological processes down to the quantum level with atomic resolution. The theory of diamond quantum sensors and the current developments from their preparation to sensing techniques have been critically discussed in this Minireview.  相似文献   
954.
Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio‐molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer‐by‐layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio‐molecules using external triggers such as IR‐light.

  相似文献   

955.
The growth factor bone morphogenetic protein 2 (BMP‐2) is utilized in surgical procedures to improve bone regeneration; however, current treatments deliver BMP‐2 at amounts greater than 100 000 fold of physiological levels, which increases treatment costs and risk of side effects. Drug‐eluting microcarriers developed to improve these therapies have faced significant commercialization challenges including particle size distributions, solvent removal, low encapsulation efficiency, and bioactivity loss. In this study, a solvent‐free method is presented for fabrication of uniform polyHIPE microspheres for controlled growth factor release. Emulsion templating principles and fluid dynamics were used to fabricate uniform particles with tunable particle size (200–800 μm) and pore size (10–30 μm). The ability to independently tune particle and pore size is expected to provide excellent control of release kinetics. Overall, this solvent‐free method for making porous microspheres displays strong promise for the controlled release of BMP‐2 and other growth factors.

  相似文献   

956.
The biodegradable polymeric nanomedicines that may be integrated with multi‐stimuli‐sensitivity to achieve triggered or on‐demand drug release kinetics are challenging for polymer therapeutics and drug delivery systems. By controlling the structure transformation of one polypeptide‐b‐PEO copolymer, a novel multi‐responsive polypeptide‐based vesicle (polypeptidosome) presents the combined sensitivity of multiple physiological and clinic‐related stimuli, and both morphology and size of the polypeptidosome are changed during the triggered process. The designer polypeptide has unique structures composed of 1) light‐responsive o‐nitrobenzyl groups, 2) oxidizable thioether linkers, 3) photo‐caged redox thiol groups on parent poly(L‐cysteine), and 4) tunable conformation, which enable the polypeptidosome to have a peculiar multi‐response. The anticancer drug doxorubicin can be released in a controlled or on–off manner. The combination stimuli of UV irradiation and H2O2 oxidation induces a large effect and a lower IC50 of 3.80 μg doxorubicin (DOX) equiv/mL compared to 5.28 μg DOX equiv/mL of individual H2O2 trigger.

  相似文献   

957.
The development of stimuli‐responsive polymeric nanocarriers could significantly enhance drug bioavailability due to improved pharmacokinetics and biodistribution. However, in the drug delivery process, the poor cell uptake of drug‐loaded carriers has greatly limited the therapeutic efficiency for anti‐cancer applications. Herein, 2,3‐dimethylmaleic anhydride (DMMA) is engineered into the well‐defined biodegradable amphiphilic block copolymer poly(D,L‐lactide)‐block‐poly(2‐aminoethyl methacrylate) (PLA‐b‐PAEMA) to construct a tumor‐acidity activated nanocarrier (PLA‐b‐PAEMA/DMMA) for potential tumor therapy. After the loading of positively charged DOX·HCl into the negatively charged corona structure through electrostatic attraction, this carrier is expected to prolong the blood circulation time and smartly convert surface charge from negative to positive for enhanced tumor cell uptake and targeted drug release. Furthermore, this carrier exhibits additional cytotoxicity for tumor cells after the tumor‐acidity activated surface charge‐conversion from negative to positive. Thus, this smart carrier is a feasible candidate for potential cancer therapy.

  相似文献   

958.
A simple process is developed to fabricate metallo‐supramolecular nanogels (MSNs) by the metallo‐supramolecular‐coordinated interaction between histidine and iron‐meso‐tetraphenylporphin. MSNs are composed of histidine‐modified dextran (DH) and iron‐meso‐tetraphenylporphin (Fe–Por) and exhibit excellent biocompatibility and stability. MSNs show pH responsiveness in the intracellular mildly acidic environment, which has great potential for acid‐triggered drug release delivery. In vitro drug release profiles demonstrate that the pH‐dependent disassembly of MSNs to histidine and Por results in a quicker release rate of loaded‐DOX at pH 5.3, while at pH 7.4 MSNs could hinder the release of loaded‐DOX due to the enhanced stability of MSNs.

  相似文献   

959.
The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ~75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists – in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.  相似文献   
960.
The fabrication of a mesoporous silica nanoparticle (MSN)?protamine hybrid system (MSN?PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN–PRM) consists of an MSN support in which mesopores are capped with an FDA‐approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN–PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug‐induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN–PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号