首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   31篇
  国内免费   97篇
化学   960篇
晶体学   12篇
力学   1篇
综合类   3篇
物理学   21篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   15篇
  2020年   19篇
  2019年   29篇
  2018年   18篇
  2017年   27篇
  2016年   18篇
  2015年   21篇
  2014年   40篇
  2013年   82篇
  2012年   41篇
  2011年   43篇
  2010年   27篇
  2009年   29篇
  2008年   47篇
  2007年   43篇
  2006年   52篇
  2005年   55篇
  2004年   60篇
  2003年   45篇
  2002年   42篇
  2001年   35篇
  2000年   32篇
  1999年   28篇
  1998年   25篇
  1997年   25篇
  1996年   21篇
  1995年   13篇
  1994年   11篇
  1993年   11篇
  1992年   15篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1984年   1篇
  1982年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有997条查询结果,搜索用时 15 毫秒
91.
In the present article, we describe the synthesis and characterization of conjugates based on pyroglutamyl‐S‐glutamic acid and bisoligo‐[R,S]‐3‐hydroxybutyrates (PyGlu‐S_‐Glu_bisOHB) using anionic ring opening polymerization of β‐butyrolactone with a dipeptide bearing two carboxylate groups as potassium salt. The results indicated that the above‐mentioned reaction is accompanied of oligomerization of β‐butyrolactone yielding (3‐hydroxybutyrates) oligomers with crotonate and carboxyl end groups. We report also the end group analysis of the synthesized conjugates using electrospray ionization tandem mass spectrometry (ESI‐MS), the latter confirmed the presence of a mixture of dipeptide conjugate with β‐butyrolactone oligomer chain and β‐butyrolactone homopolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4103–4111, 2008  相似文献   
92.
Well‐defined ABCD 4‐Miktoarm star‐shaped quarterpolymers of [poly(styrene)‐poly(tert‐butyl acrylate)‐poly(ethylene oxide)‐poly(isoprene)] [star(PS‐PtBA‐PEO‐PI)] were successfully synthesized by the combination of the “click” chemistry and multiple polymerization mechanism. First, the poly(styryl)lithium (PS?Li+) and the poly(isoprene)lithium (PI?Li+) were capped by ethoxyethyl glycidyl ether (EEGE) to form the PS and PI with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, respectively. After these two hydroxyl groups were selectively modified to propargyl and 2‐bromoisobutyryl group for PS, the resulted PS was used as macroinitiator for ATRP of tBA monomer and the diblock copolymer PS‐b‐PtBA with a propargyl group at the junction point was achieved. Then, using the functionalized PI as macroinitiator for ROP of EO monomer and bromoethane as blocking agent, the diblock copolymer PI‐b‐PEO with a protected hydroxyl group at the conjunction point was synthesized. After the hydrolysis, the recovered hydroxyl group of PI‐b‐PEO was modified to bromoacetyl and then azide group successively. Finally, the “click” chemistry between them was proceeded smoothly. The obtained star‐shaped quarterpolymers and intermediates were characterized by 1H NMR, FT‐IR, and SEC in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2154–2166, 2008  相似文献   
93.
Heterograft copolymers poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ ethylene oxide)‐graft‐polystyrene and poly(tert‐butyl acrylate) (poly (GTEMPO‐co‐EO)‐g‐PS/PtBA) were synthesized in one‐pot by atom transfer nitroxide radical coupling (ATNRC) reaction via “graft onto.” The main chain was prepared by the anionic ring‐opening copolymerization of ethylene oxide (EO) and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) first, then the polystyrene and poly (tert‐butyl acrylate) with bromine end (PS‐Br, PtBA‐Br) were prepared by atom transfer radical polymerization (ATRP). When three of them were mixed each other in the presence of CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine (PMDETA) at 90 °C, the formed secondary carbon radicals at the PS and PtBA chain ends were quickly trapped by nitroxide radicals on poly(GTEMPO‐co‐EO). The heterograft copolymers were well defined by 1H NMR, size exclusion chromatography, fourier transform infrared, and differential scanning calorimetry in detail. It was found that the density of GTEMPO groups on main chain poly(GTEMPO‐co‐EO), the molecular weights of PS/PtBA side chains, and the structure of macroradicals can exert the great effects on the graft efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6770–6779, 2008  相似文献   
94.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   
95.
A brief overview of the role that Dr. Michael Szwarc has played in unraveling the mechanism of living anionic polymerization is presented. Emphasis is placed on the different ionic species that control the propagation reaction in ether-type solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2101–2107, 2002  相似文献   
96.
Anionic polymerization of methacrylates under sterically confined environment in a spherical beads‐shaped networked polystyrene (NwPS) matrix is described. The initiator used herein is a samarium (Sm) (III) enolate, which was formed by treatment of 2‐bromoisobutylate immobilized in the side chain of NwPS with Sm (II) iodide. By using this NwPS‐bound initiator, polymerization of a series of methacrylates (=solid‐supported polymerization) was studied to find its two aspects: (1) In the early stages, the rate constant for each methacrylate was comparable to that for its conventional solution‐phase polymerization using a Sm (III) enolate, suggesting that methacrylate can be efficiently supplied to the propagating end by its free permeation without any interference by the networked structure of the matrix. (2) After the early stages, the rate constant decreased remarkably, implying that permeation of methacrylate was sterically interfered by the formed poly(methacrylate) that filled the confined space in NwPS, as supported by a SEM image of the resulting beads, of which pores were filled with the formed polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1510–1521, 2009  相似文献   
97.
Three linear pentablock quintopolymers (l‐SIDMV), where S is polystyrene (PS), I polyisoprene‐1,4 (PI), D poly(dimethylsiloxane) (PDMS), M poly(tert‐butyl methacrylate) (PtBuM), and V poly(2‐vinylpyridine) (P2VP), were synthesized by anionic polymerization high vacuum techniques. The approach involves the following: (a) The synthesis of living triblock terpolymer PS‐b‐PI‐b‐PDMSLi and diblock copolymer P2VP‐b‐PtBuMK by sequential polymerizations of the corresponding monomers with sec‐BuLi and benzyl potassium, respectively; and (b) The selective linking of the living triblock terpolymer with the chlorosilane group of 2‐(chloromethylphenyl)ethyldimethylchlorosilane (CMPDMS), followed by linking of the living block copolymer with the remaining chloromethyl group of CMPDMS. Molecular characterization carried out by size exclusion chromatography, membrane osmometry, solution (in CDCl3 or d8‐toluene) and solid‐state 1H‐NMR spectroscopy indicated a high degree of molecular and compositional homogeneity. Differential scanning calorimetry results on the precursors and final polymers were discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3938–3946, 2008  相似文献   
98.
99.
Thermosensitive anionic block copolymers of sodium 2‐acrylamido‐2‐methylpropanesulfonate (AMPS) and N‐isopropylacrylamide (NIPAAM) with different block lengths were prepared by atom transfer radical polymerization (ATRP). Controlled polymerization was achieved by using ethyl 2‐chloropropionate (ECP) as initiator and CuCl/CuCl2/tris(2‐dimethylaminoethyl)amine (Me6TREN) catalytic system in DMF:water 50:50 (v/v) mixtures at 20 °C. Blocks lengths ranging from 36 to 98 repeating units were obtained. The association properties in aqueous solutions at different NaCl ionic strengths were studied as a function of temperature and polymer concentration by dynamic light scattering, fluorescence spectroscopy, and energy‐filtered transmission electron microscopy. The block copolymers with a higher pNIPAAM/pAMPS ratio formed spherical core‐shell type micelles independently of the ionic strength. The block copolymers with lower pNIPAAM/pAMPS ratio formed core‐shell type micelles at high ionic strength. Larger particles were observed at low ionic strength, which could be due to the formation of vesicles or compound micelles/micellar clusters. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4830–4842, 2008  相似文献   
100.
The second paper of the series devoted to the preparation and characterization of vinyl and hydrido‐functionalized silicones proposes readily available techniques to polymerize commercially available cyclosiloxanes. This study is divided into two main sections: one relies on the synthesis of various functional silicone oils by heterogeneous cationic ring opening polymerization (ROP) of cyclotetrasiloxanes (D4, D) and appropriate 1,3‐difunctional disiloxanes; the second part describes the anionic ROP of hexamethylcyclotrisiloxane (D3) initiated by potassium silanolates to prepare both homo‐ and hetero‐vinyl functionalized silicones. The conditzions in which polymers with desired molecular weights can be obtained have been established and some kinetic considerations are also reported. The width of the final molar mass distribution ranged between 1.5 and 1.8, respectively, in any case narrower than the mixtures proposed by different providers (around 2). Polymers were characterized by different techniques of size exclusion chromatography (SEC), proton and silicon nuclear magnetic resonance (1H and 29Si NMR), and mass spectrometry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号