首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   80篇
  国内免费   8篇
化学   307篇
晶体学   2篇
力学   1篇
综合类   1篇
数学   3篇
物理学   35篇
  2024年   2篇
  2023年   9篇
  2022年   26篇
  2021年   32篇
  2020年   29篇
  2019年   10篇
  2018年   9篇
  2017年   5篇
  2016年   27篇
  2015年   23篇
  2014年   33篇
  2013年   26篇
  2012年   19篇
  2011年   24篇
  2010年   14篇
  2009年   19篇
  2008年   10篇
  2007年   8篇
  2006年   1篇
  2005年   7篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  1997年   4篇
排序方式: 共有349条查询结果,搜索用时 62 毫秒
71.
Functional amyloid is produced by many organisms but is particularly well understood in bacteria, where proteins such as CsgA (E. coli) and FapC (Pseudomonas) are assembled as functional bacterial amyloid (FuBA) on the cell surface in a carefully optimized process. Besides a host of helper proteins, FuBA formation is aided by multiple imperfect repeats which stabilize amyloid and streamline the aggregation mechanism to a fast-track assembly dominated by primary nucleation. These repeats, which are found in variable numbers in Pseudomonas, are most likely the structural core of the fibrils, though we still lack experimental data to determine whether the repeats give rise to β-helix structures via stacked β-hairpins (highly likely for CsgA) or more complicated arrangements (possibly the case for FapC). The response of FuBA fibrillation to denaturants suggests that nucleation and elongation involve equal amounts of folding, but protein chaperones preferentially target nucleation for effective inhibition. Smart peptides can be designed based on these imperfect repeats and modified with various flanking sequences to divert aggregation to less stable structures, leading to a reduction in biofilm formation. Small molecules such as EGCG can also divert FuBA to less organized structures, such as partially-folded oligomeric species, with the same detrimental effect on biofilm. Finally, the strong tendency of FuBA to self-assemble can lead to the formation of very regular two-dimensional amyloid films on structured surfaces such as graphite, which strongly implies future use in biosensors or other nanobiomaterials. In summary, the properties of functional amyloid are a much-needed corrective to the unfortunate association of amyloid with neurodegenerative disease and a testimony to nature’s ability to get the best out of a protein fold.  相似文献   
72.
TIR-domain-containing adapter-inducing interferon-β (TRIF) is an innate immune protein that serves as an adaptor for multiple cellular signalling outcomes in the context of infection. TRIF is activated via ligation of Toll-like receptors 3 and 4. One outcome of TRIF-directed signalling is the activation of the programmed cell death pathway necroptosis, which is governed by interactions between proteins that contain a RIP Homotypic Interaction Motif (RHIM). TRIF contains a RHIM sequence and can interact with receptor interacting protein kinases 1 (RIPK1) and 3 (RIPK3) to initiate necroptosis. Here, we demonstrate that the RHIM of TRIF is amyloidogenic and supports the formation of homomeric TRIF-containing fibrils. We show that the core tetrad sequence within the RHIM governs the supramolecular organisation of TRIF amyloid assemblies, although the stable amyloid core of TRIF amyloid fibrils comprises a much larger region than the conserved RHIM only. We provide evidence that RHIMs of TRIF, RIPK1 and RIPK3 interact directly to form heteromeric structures and that these TRIF-containing hetero-assemblies display altered and emergent properties that likely underlie necroptosis signalling in response to Toll-like receptor activation.  相似文献   
73.
It has been indicated that amyloid β (Aβ) plaques can be accumulated within the basement membranes of cerebrovascular smooth muscle cells (CVSMCs) and stimulate the induction of cerebral amyloid angiopathy (CAA). However, the exact mechanism(s) of which small molecules including callistephin mitigate the formation of Aβ aggregation and associated CAA is not well-understood. Therefore, in the present study, Aβ1–42 samples in the aggregation buffer were co-incubated for 36 h without or with of callistephin and the protein aggregation features along with the associated cytotoxicity against CVSMCs as the core components of cerebral arterial wall were explored by different biochemical and cellular methods. Fluorescence (ThT, Nile red) and CD techniques indicated the inhibition of Aβ1–42 fibrillization in the presence of callistephin. Cellular assays revealed that cytotoxicity of Aβ1–42 samples aged in the aggregation buffer with callistephin was much less against CVSMCs than Aβ1–42 amyloid alone through regulation of membrane leakage and downregulation of TNF-α and IL-6 at protein level. In conclusion, these data may provide useful information about the possible mechanisms by which callistephin can show its protective effect against CAA.  相似文献   
74.
Alzheimer’s disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for AD treatment. However, these drugs can only alleviate AD symptoms. Thus, this research focuses on the discovery of novel lead compounds that possess multitarget regulation of AD etiopathology relating to amyloid cascade. The ascorbic acid structure has been designated as a core functional domain due to several characteristics, including antioxidant activities, amyloid aggregation inhibition, and the ability to be transported to the brain and neurons. Multifunctional ascorbic derivatives were synthesized by copper (I)-catalyzed azide–alkyne cycloaddition reaction (click chemistry). The in vitro and cell-based assays showed that compounds 2c and 5c exhibited prominent multifunctional activities as beta-secretase 1 inhibitors, amyloid aggregation inhibitors, and antioxidant, neuroprotectant, and anti-inflammatory agents. Significant changes in activities promoting neuroprotection and anti-inflammation were observed at a considerably low concentration at a nanomolar level. Moreover, an in silico study showed that compounds 2c and 5c were capable of being permeated across the blood–brain barrier by sodium-dependent vitamin C transporter-2.  相似文献   
75.
76.
人胰岛淀粉样蛋白(hIAPP)与Ⅱ型糖尿病(T2DM)密切相关,被认为是导致胰岛β细胞凋亡的致病因素之一,研究发现环境因素(如金属离子、pH值和温度等)对hIAPP的聚集过程有很大影响。本文采用多种生物物理的实验方法,研究了二价铜离子对hIAPP及其片段聚集的影响。原子力显微镜(AFM)和硫代黄素T(ThT)荧光的测量表明,铜离子能够明显地抑制hIAPP(11~28)聚集成纤维,其抑制程度随铜离子浓度的增加而明显加剧。显微傅里叶变换红外光谱(Micro-FTIR)的结果表明,铜离子能够抑制hIAPP多肽中α螺旋结构向β折叠的转变。另外,氨基酸定点突变实验结果表明,hIAPP(11~28)中的组氨酸(His18)可能对多肽的聚集行为和金属铜离子的相互作用起到了决定性的影响。  相似文献   
77.
Insoluble senile plaque aggregates are indicative of Alzheimer's disease pathology. A similar phenomenon occurs in Parkinson's disease with the build‐up of Lewy bodies. The analysis of senile plaques, and other brain samples, from Alzheimer's disease and Parkinson's disease patients by matrix‐assisted laser desorption/ionization mass spectrometry has advantages but also presents obstacles because of the nature of the processes utilized in isolation procedures and storage. Salts, buffers, and detergents necessary in the isolation of biological species may cause adducts and ion suppression that convolute the spectra obtained. We previously determined that amyloid‐beta from isolated senile plaque deposits fragment similarly to the synthetic 40 and 42 amino acid peptide when analyzed by matrix‐assisted laser desorption/ionization mass spectrometry. In addition, α‐synuclein also fragments predictably by in‐source decay. This provides information that may be applied to the identification and localization of amyloid‐beta and α‐synuclein in senile plaques and intact tissue sections. Ion suppression must still be accounted for when analyzing biological samples, which makes identifying fragments at lower abundance difficult. The addition of certain transition‐metal salts (Cu(II), Zn(II)) to the sample prior to analysis serves to “clean” the spectra and allow the peptide fragments produced to be observed with a much higher signal to noise and occasionally, improved resolution. We present a systematic study of incubation with different metal salts and their impact on the quality of the spectra, as well as the role of the binding of the metals to the model biological compounds, obtained for synthetic amyloid‐beta, synthetic α‐synuclein, and isolated senile plaques. The optimized sample preparation methods presented will provide for simpler and more thorough identification of these biologically relevant species in human‐derived samples.  相似文献   
78.
Misfolding of the protein α‐synuclein (αSyn) into amyloid fibrils plays a central role in the development of Parkinson's disease. Most approaches for the inhibition of αSyn fibril formation are based on stabilizing the native monomeric form of the protein or destabilizing the fibrillized misfolded form. They require high concentrations of inhibitor and therefore cannot be easily used for therapies. In this work, we designed an inhibitor (Inh‐β) that selectively binds the growing ends of αSyn fibrils and creates steric hindrance for the binding of monomeric αSyn. This approach permits the inhibition of fibril formation at Inh‐β concentrations (IC50=850 nm ) much lower than the concentration of monomeric αSyn. We studied its kinetic mechanism in vitro and identified the reactions that limit inhibition efficiency. It is shown that blocking of αSyn fibril ends is an effective approach to inhibiting fibril growth and provides insights for the development of effective inhibitors of αSyn aggregation.  相似文献   
79.
α‐Synuclein (α‐Syn) aggregation is associated with Parkinson's disease (PD) pathogenesis. In PD, the role of oligomers versus fibrils in neuronal cell death is debatable, but recent studies suggest oligomers are a proximate neurotoxin. Herein, we show that soluble α‐Syn monomers undergo a transformation from a solution to a gel state on incubation at high concentration. Detailed characterization of the gel showed the coexistence of monomers, oligomers, and short fibrils. In vitro, the gel was highly cytotoxic to human neuroblastoma cells. The individual constituents of the gel are short‐lived species but toxic to the cells. They comprise a structurally heterogeneous population of α‐helical and β‐sheet‐rich oligomers and short fibrils with the cross‐β motif. Given the recent evidence of the gel‐like state of the protein associated with neurodegenerative diseases, the gel state of α‐Syn in this study represents a mechanistic and structural model for the in vivo toxicity of α‐Syn in PD.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号