首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1122篇
  免费   105篇
  国内免费   112篇
化学   1245篇
晶体学   4篇
力学   5篇
综合类   3篇
数学   1篇
物理学   81篇
  2024年   4篇
  2023年   9篇
  2022年   31篇
  2021年   36篇
  2020年   52篇
  2019年   37篇
  2018年   34篇
  2017年   28篇
  2016年   51篇
  2015年   44篇
  2014年   53篇
  2013年   107篇
  2012年   54篇
  2011年   48篇
  2010年   44篇
  2009年   40篇
  2008年   40篇
  2007年   47篇
  2006年   61篇
  2005年   37篇
  2004年   48篇
  2003年   47篇
  2002年   52篇
  2001年   35篇
  2000年   46篇
  1999年   34篇
  1998年   37篇
  1997年   25篇
  1996年   31篇
  1995年   18篇
  1994年   17篇
  1993年   29篇
  1992年   22篇
  1991年   16篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有1339条查询结果,搜索用时 46 毫秒
81.
The polysiloxane-based alicyclic episulfide resin (PSCER) was synthesized through substitution of oxygen atoms in 1,3-bis[2-(3{7-oxabicyclo[4,1,0]hepyl})ethyl]-tetramethyldisiloxane with sulfur atoms using potassium thiocyanate (KSCN) as the reagent. The product was purified by column chromatography, and the by-products were isolated. It was found by 1H-NMR and 13C-NMR that the by-products were cycloolefins formed by desulfurization of the episulfide groups. PSCER was unstable; desulfurization took place easily, especially at high temperatures. The PSCER resin could not be cured with methylhexahydrophthalic anhydride (MeHPPA). When m-phenylenediamine or isophorondiamine was used as curing agent, PSCER showed a higher reactivity compared with the parent epoxide. However, the reactivity of the alicyclic episulfide was much lower than the polysiloxane based aliphatic episulfide for the steric hindrance of the six member ring. Desulfurization took place upon curing of the alicyclic episulfide resin, therefore the cured resin showed poor mechanical properties. Thermal stability of cured PSCER resin was also poor on account of low bonding energy of C-S and crosslinking density.  相似文献   
82.

Radical copolymerization reaction of vinyl acetate (VA) and methyl acrylate (MA) was performed in a solution of benzene‐d6 using benzoyl peroxide (BPO) as the initiator at 60°C. Kinetic studies of this copolymerization reaction were investigated by on‐line 1H‐NMR spectroscopy. Individual monomer conversions vs. reaction time, which was followed by this technique, were used to calculate the overall monomer conversion, as well as the monomer mixture and the copolymer compositions as a function of time. Monomer reactivity ratios were calculated by various linear and nonlinear terminal models and also by simplified penultimate model with r 2(VA)=0 at low and medium/high conversions. Overall rate coefficient of copolymerization was calculated from the overall monomer conversion vs. time data and k p  . k t ?0.5 was then estimated. It was observed that k p  . k t ?0.5 increases with increasing the mole fraction of MA in the initial feed, indicating the increase in the polymerization rate with increasing MA concentration in the initial monomer mixture. The effect of mole fraction of MA in the initial monomer mixture on the drifts in the monomer mixture and copolymer compositions with reaction progress was also evaluated experimentally and theoretically.  相似文献   
83.

Free radical copolymerization of N‐vinyl‐2‐pyrrolidone with 2‐ethoxyethyl methacrylates was carried out with 2,2′‐azobisisobutyronotrile as an initiator in 1,4‐dioxane. The resulting copolymer was characterized by FTIR, H1‐NMR and C13‐NMR spectroscopic techniques thermal properties of copolymer were determined by DSC and TGA. The reactivity ratios of the monomers were computed by the Fineman‐Rose (F‐R), Kelen‐Tudos (K‐T) and extended Kelen‐Tudos (EK‐T) method at lower conversion, using the data obtained from both FTIR and elemental analysis studies; the results are in good agreement with each other. The average reactivity ratio, Alfrey‐Price Q and e values were found to be r 1=0.769, r 2=0.266 and Q 1=0.0859, e 1=0.4508, respectively for NVP/EOEMA copolymer. The distribution of monomer sequence along the copolymer chain was calculated using a statistical method based on obtained reactivity ratio. The number average molecular weight and polydispersity were determined by GPC.  相似文献   
84.
The new acrylic monomer 4‐propanoylphenyl acrylate (PPA) was synthesized and copolymerized with methyl methacrylate (MMA) in methyl ethyl ketone at 70±1°C using benzoyl peroxide as a free radical initiator. The copolymers were characterized by FT‐IR, 1H‐NMR and 13C‐NMR spectroscopic techniques. The compositions of the copolymers were determined by 1H‐NMR analysis. The reactivity ratios of the monomers were determined using Fineman‐Ross (r1=0.5535 and r2=1.5428), Kelen‐Tüdös (r1=0.5307 and r2=1.4482), and Ext. Kelen‐Tüdös (r1=0.5044 and r2=1.4614), as well as by a nonlinear error‐in‐variables model (EVM) method using a computer program, RREVM (r1=0.5314 and r2=1.4530). The solubility of the polymers was tested in various polar and non‐polar solvents. The elemental analysis was determined by a Perkin‐Elmer C‐H analyzer. The molecular weights (Mw and Mn) of the copolymers were determined by gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of MMA in the copolymers. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of MMA in the copolymers.  相似文献   
85.
Skin sensitisation is a key endpoint under REACH as it is costly and its assessment currently has a high dependency on animal testing. In order to reduce both the cost and the numbers of animals tested, it is likely that (quantitative) structure–activity relationships ((Q)SAR) and read-across methods will be utilised as part of intelligent testing strategies. The majority of skin sensitisers elicit their effect via covalent bond formation with skin proteins. These reactions have been understood in terms of well defined nucleophilic–electrophilic reaction chemistry. Thus, a first step in (Q)SAR analysis is the assignment of a chemical's potential mechanism of action enabling it to be placed in an appropriate reactivity domain. The aim of this study was to design a series of SMARTS patterns capable of defining these reactivity domains. This was carried out using a large database of local lymph node assay (LLNA) results that had had potential mechanisms of action assigned to them using expert knowledge. A simple algorithm was written enabling the SMARTS patterns to be used to screen a database of SMILES strings. The SMARTS patterns were then evaluated using a second, smaller, test set of LLNA results which had also had potential mechanisms of action assigned by experts. The results showed that the SMARTS patterns provided an excellent method of identifying potential electrophilic mechanisms. The findings are supported, in part, by molecular orbital calculations which confirm assignment of reactive mechanism of action. The ability to define a chemical's potential reaction mechanism is likely to be of significant benefit to regulators and risk assessors as it enables category formation and subsequent read-across to be performed.  相似文献   
86.
考虑取代基的位置和电子效应对反应体系的影响, 本文系统地研究了16e化合物Cp*Ir(S2C2B10H10) (1)与邻、间位取代苯基叠氮的反应。研究结果表明:与邻、间位取代苯基叠氮反应均生成苯环邻位碳发生C-H 活化形成C-S 键的金属配合物。这些配合物通过核磁(1H、11B、13C)、红外、质谱、元素分析和单晶结构解析进行了全面地表征。在光照反应结果的基础上, 提出了形成这类产物的自由基机理。  相似文献   
87.
Linear and crosslinked copolymers with different compositions of 1-hexadecene and trimethylolpropane distearate monoacrylate monomers were synthesized and evaluated for oil-absorbency application. Different concentrations of ethylene glycol diacrylate (EGDA) and ethylene glycol dimethacrylate (EGDMA) crosslinkers were used. The concentration of both crosslinkers was varied from 0.5% to 2%. Copolymer compositions were determined from 1H NMR spectroscopy. Monomer reactivity ratios were calculated using Fineman-Ross and Kelen-Tudos techniques at low conversions. The oil absorbency and swelling rate constant were measured and influenced mainly by the degree of crosslinking and the hydrophobicity of copolymer units. The final equilibrium oil content, volume fraction of polymer and swelling capacity were determined at 298 K. The effective crosslinking density Ve, theoretical crosslink density Vt, the average molecular weight between the crosslinks Mc and the polymer-toluene interaction parameter χ were determined from swelling measurements. The efficiencies of EGDA and EGDMA crosslinking agents toward copolymers were determined.  相似文献   
88.
By displaying different O‐glycans in a multivalent mode, mucin and mucin‐like glycoproteins are involved in a plethora of protein binding events. The understanding of the roles of the glycans and the identification of potential glycan binding proteins are major challenges. To enable future binding studies of mucin glycan and glycopeptide probes, a method that gives flexible and efficient access to all common mucin core‐glycosylated amino acids was developed. Based on a convergent synthesis strategy starting from a shared early stage intermediate by differentiation in the glycoside acceptor reactivity, a common disaccharide building block allows for the creation of extended glycosylated amino acids carrying the mucin type‐2 cores 1–4 saccharides. Formation of a phenyl‐sulfenyl‐N‐Troc (Troc=trichloroethoxycarbonyl) byproduct during N‐iodosuccinimide‐promoted thioglycoside couplings was further characterized and a new methodology for the removal of the Troc group is described. The obtained glycosylated 9‐fluorenylmethoxycarbonyl (Fmoc)‐protected amino acid building blocks are incorporated into peptides for multivalent glycan display.  相似文献   
89.
采用密度泛函理论方法系统地研究了Pd/Au(100)表面上乙烯气相氧化法合成乙酸乙烯酯的催化活性.对关键反应物种在该表面的吸附、共吸附性质及耦合基元反应进行了计算和讨论.乙烯在Pd/Au(100)表面上存在π-,2σ-两种稳定吸附构型,为弱化学吸附;乙酸根物种存在Pd-Au与Pd-Pd两种二位啮合(bi-dentate)构型,为强化学吸附.Pd/Au(100)表面的吸附作用使两个关键反应物种分子轨道能量靠近.共吸附构型中最高占据和最低未占据分子轨道的能级差(HOMO-LUMO-gap)随表面相邻Pd原子数目的增多而增大,表明由HOMO向LUMO分子轨道发生电子转移的能力变弱.耦合基元反应过渡态能垒的分析结果与HOMO-LUMO-gap定性分析结果一致,说明连续相邻的表面Pd原子不利于反应的进行.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号