首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   131篇
  国内免费   67篇
化学   387篇
晶体学   10篇
力学   44篇
综合类   8篇
数学   15篇
物理学   382篇
  2024年   2篇
  2023年   10篇
  2022年   23篇
  2021年   35篇
  2020年   16篇
  2019年   25篇
  2018年   13篇
  2017年   28篇
  2016年   30篇
  2015年   21篇
  2014年   41篇
  2013年   79篇
  2012年   50篇
  2011年   48篇
  2010年   39篇
  2009年   39篇
  2008年   40篇
  2007年   49篇
  2006年   36篇
  2005年   39篇
  2004年   31篇
  2003年   21篇
  2002年   22篇
  2001年   18篇
  2000年   16篇
  1999年   6篇
  1998年   13篇
  1997年   2篇
  1996年   9篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
排序方式: 共有846条查询结果,搜索用时 468 毫秒
91.
飞秒激光制备硅窗口增透保护类金刚石膜   总被引:2,自引:0,他引:2       下载免费PDF全文
采用飞秒激光(800 nm,120 fs,3 W,1 000 Hz)制备类金刚石膜,研究了不同偏压、生长温度和氧气氛等辅助手段对激光沉积类金刚石膜的影响,实验发现在室温(25℃)、无偏压和低气压氧气氛(2 Pa)条件下沉积的类金刚石膜性能最优。在单面预镀普通增透膜的硅红外窗口材料上镀制出了无氢类金刚石膜,3~5μm波段平均透过率达到90%以上,纳米硬度高达40 GPa,用压力为9.8 N的橡皮磨头,摩擦105次,膜层未见磨损,并且通过了军标规定的高温、低温、湿热、盐雾等环境试验,所制类金刚石膜可对红外窗口起到较好的增透保护作用。  相似文献   
92.
本文研究了利用天空光光谱反演大气成分的方法中,参考光谱对测量结果的影响。分析了中午的天顶光光谱、实时采集的天顶光光谱对信号的影响,提出了针对空间任意方向的大气污染(尤其局部的突发性污染),实时采集的低污染区天空光光谱是具体研究污染最合适的参考光谱。其结果为将该方法应用于监测大气环境提供了依据。  相似文献   
93.
为了更准确地计算大气透过率,在Mie散射理论基础上,分析了雷达系统设计中需考虑的大气透过率的经验计算公式,指出了该经验公式的不足。考虑大气分析软件MODTRAN自身的优点,采用经验公式和软件计算相结合的方式计算大气透过率,给出了MODTRAN计算结果的修正表达式。在该理论指导下,进行了CO2激光大气传输实验。由于没有考虑大气湍流,理论计算和实验结果存在一定偏差,但不影响本文方法的实用性。实验测量显示,激光器出口处光斑能量抖动比为6.18%,而在50m和1km处能量抖动比分别为8.3%和50.2%,表明随着传输距离增加,能量抖动比增大。除掉激光器本身输出能量抖动外,在50m和1km处由大气传输造成的能量抖动比分别为2.12%和44.02%。实验结果提示,水平传输1km时能量抖动已相当剧烈,所以对更远距离的激光传输,自适应光学补偿显得尤为重要。  相似文献   
94.
New absorption cells designed specifically to achieve stable temperatures down to 66 K inside the sample compartment of an evacuated Bruker IFS-125HR Fourier transform spectrometer (FTS) were developed at Connecticut College and tested at the Jet Propulsion Laboratory (JPL). The temperature stabilized cryogenic cells with path lengths of 24.29 and 20.38 cm were constructed of oxygen free high conductivity (OFHC) copper and fitted with wedged ZnSe windows using vacuum tight indium seals. In operation, the temperature-controlled cooling by a closed-cycle helium refrigerator achieved stability of ±0.01 K. The unwanted absorption features arising from cryodeposits on the cell windows at low temperatures were eliminated by building an internal vacuum shroud box around the cell which significantly minimized the growth of cryodeposits. The effects of vibrations from the closed-cycle helium refrigerator on the FTS spectra were characterized. Using this set up, several high-resolution spectra of methane isotopologues broadened with nitrogen were recorded in the 1200-1800 cm−1 spectral region at various sample temperatures between 79.5 and 296 K. Such data are needed to characterize the temperature dependence of spectral line shapes at low temperatures for remote sensing of outer planets and their moons. Initial analysis of a limited number of spectra in the region of the R(2) manifold of the ν4 fundamental band of 13CH4 indicated that an empirical power law used for the temperature dependence of the N2-broadened line widths would fail to fit the observed data in the entire temperature range from 80 to 296 K; instead, it follows a temperature-dependence similar to that reported by Mondelain et al. [17] and [18]. The initial test was very successful proving that a high precision Fourier transform spectrometer with a completely evacuated optical path can be configured for spectroscopic studies at low temperatures relevant to the planetary atmospheres.  相似文献   
95.
Based on the extended Huygens–Fresnel integral and the second-order moments of the Wigner distribution function, an analytical formulae for the propagation factors (M2-factors) of coherent and partially coherent one-dimensional Hermite–Gaussian beams in a turbulent atmosphere are derived. Evolution properties of the M2-factor of the Hermite–Gaussian beam in a turbulent atmosphere are studied numerically in detail. Our results show that the M2-factor of the Hermite–Gaussian beam increases upon propagation in a turbulent atmosphere. The M2-factor of the Hermite–Gaussian beam with larger beam order (or lower coherence) increases slower that of the Hermite–Gaussian beam with smaller beam order (or higher coherence) in a turbulent atmosphere, which means that the Hermite–Gaussian beam with a larger beam order and lower coherence is less affected by a turbulent atmosphere. Our results will be useful in long-distance free-space optical communications.  相似文献   
96.
Abstract

Gas analyses of the soil atmosphere of lignite mining dumps yielded increased contents of carbon dioxide. To get information about the potential sources and the carbon dioxide releasing capacity of the dumps, samples of dump material were investigated for their contents and isotopic compositions of organic and inorganic carbon as well as the carbon dioxide in the soil atmosphere. The contents of organic and inorganic carbon were found to vary depending on type of dump material. The isotopic composition of the organic carbon ranges between ?24.5 and ?26.5‰, which is typical for humous materials. The carbonates are found to be of marine origin (δ13C: +0.5 to ?1.1‰). By means of the isotope investigations it could be shown that the carbon dioxide in the lignite mining dump arises from these two different sources. Mixing ratios can be calculated using the isotope balance equation. Both reaction paths are associated with oxygen consumption and do not result in an increased gas pressure within the dump.  相似文献   
97.
Regular measurements of atmospheric CO 2 mixing ratios and their carbon isotope composition (13C/12C and 14C/12C ratios) performed between 2005 and 2009 at two sites of contrasting characteristics (Krakow and the remote mountain site Kasprowy Wierch) located in southern Poland were used to derive fossil fuel-related and biogenic contributions to the total CO 2 load measured at both sites. Carbon dioxide present in the atmosphere, not coming from fossil fuel and biogenic sources, was considered ‘background’ CO 2. In Krakow, the average contribution of fossil fuel CO 2 was approximately 3.4%. The biogenic component was of the same magnitude. Both components revealed a distinct seasonality, with the fossil fuel component reaching maximum values during winter months and the biogenic component shifted in phase by approximately 6 months. The partitioning of the local CO 2 budget for the Kasprowy Wierch site revealed large differences in the derived components: the fossil fuel component was approximately five times lower than that derived for Krakow, whereas the biogenic component was negative in summer, pointing to the importance of photosynthetic sink associated with extensive forests in the neighbourhood of the station. While the presented study has demonstrated the strength of combined measurements of CO 2 mixing ratios and their carbon isotope signature as efficient tools for elucidating the partitioning of local atmospheric CO 2 loads, it also showed the important role of the land cover and the presence of the soil in the footprint of the measurement location, which control the net biogenic surface CO 2 fluxes.  相似文献   
98.
Today, flexible vacuum packages are predominantly used for products to be subjected to high pressure treatment. However, tray packages with a modified atmosphere are in demand, which provide a high failure rate with respect to gas and water vapour permeability and packaging integrity. Methods to follow permeation processes under high pressure were developed and used together with optical microscopy, confocal scanning laser microscopy, Raman spectroscopy and atomic force microscopy to identify the mechanisms for changes in permeability and damage to the packaging materials. Single film samples and pouch packages filled with model products were studied. Results indicate a reversible decrease in the coefficients of diffusion and permeation under the impact of high pressure, due to the compression of the polymeric bulk. Irreversible changes in the polymeric materials are associated with gases in the packaging head space, which cause high local temperatures and create damage due to rapid deliberation upon the pressure drop at the end of the high pressure cycle.  相似文献   
99.
Torsional and rotational spectroscopic properties of pyruvic acid are determined using highly correlated ab initio methods and combining two different theoretical approaches: Second order perturbation theory and a variational procedure in three-dimensions. Four equilibrium geometries of pyruvic acid, Tc, Tt, Ct, and CC, outcome from a search with CCSD(T)-F12. All of them can be classified in the Cs point group. The variational calculations are performed considering the three internal rotation modes responsible for the non-rigidity as independent coordinates. More than 50 torsional energy levels (including torsional subcomponents) are localized in the 406–986 cm−1 region and represent excitations of the ν24 (skeletal torsion) and the ν23 (methyl torsion) modes. The third independent variable, the OH torsion, interacts strongly with ν23. The A1/E splitting of the ground vibrational state has been evaluated to be 0.024 cm−1 as it was expected given the high of the methyl torsional barrier (338 cm−1). A very good agreement with respect to previous experimental data concerning fundamental frequencies (νCAL − νEXP ~ 1 cm−1), and rotational parameters (B0CAL − B0EXP < 5 MHz), is obtained.  相似文献   
100.
The role of point defect production during deformation was examined by sealing the vacancy sinks in the grain boundaries with solutes to magnify its effect upon instantaneous strain-rate changes. AA1100 aluminium sheets were thermal-mechanically treated to result in a grain size of about 25 µm and in grain boundaries that were not capable of acting as efficient vacancy sinks. Tensile tests at various temperatures ranging from 78 to 300 K showed that above 195 K, the pinning effect could be quantitatively analysed. A rate equation analysis for mono- and di-vacancy recovery was adopted to perform fits to the deduced change in flow stress with time after strain-rate change from which apparent activation energies were derived. This examination indicates that the migrating species are predominantly di-vacancies. It is concluded that point-defect atmospheres have the capacity to glide in unison with mobile dislocations and hence are sensitive to the magnitude of the strain rate and temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号