全文获取类型
收费全文 | 610篇 |
免费 | 22篇 |
国内免费 | 18篇 |
专业分类
化学 | 440篇 |
力学 | 20篇 |
综合类 | 29篇 |
数学 | 74篇 |
物理学 | 87篇 |
出版年
2025年 | 1篇 |
2024年 | 7篇 |
2023年 | 19篇 |
2022年 | 83篇 |
2021年 | 78篇 |
2020年 | 42篇 |
2019年 | 21篇 |
2018年 | 13篇 |
2017年 | 19篇 |
2016年 | 32篇 |
2015年 | 12篇 |
2014年 | 18篇 |
2013年 | 33篇 |
2012年 | 22篇 |
2011年 | 25篇 |
2010年 | 20篇 |
2009年 | 21篇 |
2008年 | 20篇 |
2007年 | 17篇 |
2006年 | 23篇 |
2005年 | 17篇 |
2004年 | 14篇 |
2003年 | 11篇 |
2002年 | 4篇 |
2001年 | 9篇 |
2000年 | 16篇 |
1999年 | 15篇 |
1998年 | 4篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 8篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1988年 | 3篇 |
排序方式: 共有650条查询结果,搜索用时 0 毫秒
101.
Acute lung injury (ALI) is a kind of lung disease with acute dyspnea, pulmonary inflammation, respiratory distress, and non-cardiogenic pulmonary edema, accompanied by the mid- and end-stage characteristics of COVID-19, clinically. It is imperative to find non-toxic natural substances on preventing ALI and its complications. The animal experiments demonstrated that Lentinus edodes polysaccharides (PLE) had a potential role in alleviating ALI by inhibiting oxidative stress and inflammation, which was manifested by reducing the levels of serum lung injury indicators (C3, hs-CRP, and GGT), reducing the levels of inflammatory factors (TNF-α, IL-1β, and IL-6), and increasing the activities of antioxidant enzymes (SOD and CAT) in the lung. Furthermore, PLE had the typical characteristics of pyran-type linked by β-type glycosidic linkages. The conclusions indicated that PLE could be used as functional foods and natural drugs in preventing ALI. 相似文献
102.
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application. 相似文献
103.
Khalid Miandad Asad Ullah Kashif Bashir Saifullah Khan Syed Ainul Abideen Bilal Shaker Metab Alharbi Abdulrahman Alshammari Mahwish Ali Abdul Haleem Sajjad Ahmad 《Molecules (Basel, Switzerland)》2022,27(22)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank while A. annua phytochemicals were retrieved from different drug databases. The docking technique was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme. Among the total docked compounds, the top-10 docked complexes were considered for further study and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes with the best binding energies were as follows: the top-1 docked complex with a −7 kcal/mol binding energy score, the top-2 docked complex with a −6.9 kcal/mol binding energy score, and the top-3 docked complex with a −6.8 kcal/mol binding energy score. These complexes were subjected to a molecular dynamic simulation analysis for further validation to check the dynamic behavior of the selected top-complexes. During the whole simulation time, no major changes were observed in the docked complexes, which indicated complex stability. Additionally, the free binding energies for the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results revealed that the total delta energies of MMGBSA were −24.23 kcal/mol, −26.38 kcal/mol, and −25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy as −17.23 kcal/mol (top-1 complex), −24.75 kcal/mol (top-2 complex), and −24.86 kcal/mol (top-3 complex). This study explored in silico screened phytochemicals against the main protease of the SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate the obtained results. 相似文献
104.
Laís Peres Silva Ivanilson Pimenta Santos Dahara Keyse Carvalho Silva Bruna Padilha Zurita Claro dos Reis Cssio Santana Meira Marcos Venícius Batista de Souza Castro Jos Maurício dos Santos Filho Joo Honorato de Araujo-Neto Javier Alcides Ellena Rafael Gomes da Silveira Milena Botelho Pereira Soares 《Molecules (Basel, Switzerland)》2022,27(23)
Immunomodulatory agents are widely used for the treatment of immune-mediated diseases, but the range of side effects of the available drugs makes necessary the search for new immunomodulatory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydrazones derivatives (SintMed(141–156). The evaluated N-acyl hydrazones did not show cytotoxicity at the tested concentrations, presenting CC50 values greater than 50 µM. In addition, all ferrocenyl-N-acyl hydrazones modulated nitrite production in immortalized macrophages, showing inhibition values between 14.4% and 74.2%. By presenting a better activity profile, the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 also had their cytotoxicity and anti-inflammatory effect evaluated in cultures of peritoneal macrophages. The molecules were not cytotoxic at any of the concentrations tested in peritoneal macrophages and were able to significantly reduce (p < 0.05) the production of nitrite, TNF-α, and IL-1β. Interestingly, both molecules significantly reduced the production of IL-2 and IFN-γ in cultured splenocytes activated with concanavalin A. Moreover, SintMed150 did not show signs of acute toxicity in animals treated with 50 or 100 mg/kg. Finally, we observed that ferrocenyl-N-acyl hydrazone SintMed150 at 100 mg/kg reduced the migration of neutrophils (44.6%) in an acute peritonitis model and increased animal survival by 20% in an LPS-induced endotoxic shock model. These findings suggest that such compounds have therapeutic potential to be used to treat diseases of inflammatory origin. 相似文献
105.
Yana Ye Zhenlin Chen Yonglin Wu Mengmeng Gao Anqi Zhu Xinyuan Kuai Duosheng Luo Yanfen Chen Kunping Li 《Molecules (Basel, Switzerland)》2022,27(24)
Pectolinarin and linarin are two major flavone O-glycosides of Cirsium japonicum, which has been used for thousands of years in traditional Chinese medicine. Pharmacological research on pectolinarin and linarin is meaningful and necessary. Here, a process for the purification of pectolinarin and linarin from C. japonicum was established using macroporous resin enrichment followed by prep-HPLC separation. The results show the purity of pectolinarin and linarin reached 97.39% and 96.65%, respectively. The in vitro bioactivities result shows the ORAC values of pectolinarin and linarin are 4543 and 1441 µmol TE/g, respectively, meanwhile their inhibition rate of BSA-MGO-derived AGEs is 63.58% and 19.31% at 2 mg/mL, which is 56.03% and 30.73% in the BSA-fructose system, respectively. The COX-2 inhibition rate at 50 µg/mL of linarin and pectolinarin reached 55.35% and 40.40%, respectively. Furthermore, the in vivo bioassay combining of histopathologic evaluation and biochemical analysis of liver glutamic oxaloacetic transaminase, serum creatinine and TNF-α show pectolinarin can alleviate lipopolysaccharide (LPS)-induced acute liver and kidney injury in mice. Metabolomics analysis shows that pectolinarin attenuates LPS-challenged liver and kidney stress through regulating the arachidonic acid metabolism and glutathione synthesis pathways. Collectively, our work presents a solid process for pectolinarin and linarin purification and has discovered a promising natural therapeutic agent—pectolinarin. 相似文献
106.
Weipei Yang Zhongxu Liang Chengming Wen Xuehua Jiang Ling Wang 《Molecules (Basel, Switzerland)》2022,27(24)
Previous studies have shown that silymarin protects against various types of drug-induced liver injury, but whether the protective mechanism of silymarin against acetaminophen-induced liver injury is related to the CYP2E1 enzyme remains unclear. In this study, we investigated the effect of silymarin on the activity and expression of CYP2E1 in vitro and in vivo. The results of in vitro studies showed that silymarin not only inhibited the activity of CYP2E1 in human and rat liver microsomes but also reduced the expression of CYP2E1 in HepG2 cells. In vivo studies showed that silymarin pretreatment significantly reduced the conversion of chlorzoxazone to its metabolite 6-OH-CLX and significantly increased the t1/2, area under the curve (AUC) and mean residence time (MRT) of chlorzoxazone. In addition, silymarin pretreatment significantly inhibited the upregulation of Cyp2e1 expression, reduced the production of 3-cysteinylacetaminophen trifluoroacetic acid salt (APAP-CYS), and restored the liver glutathione level. The results of our study show that silymarin plays an important protective role in the early stage of acetaminophen-induced acute liver injury by reducing the activity and expression of CYP2E1, reducing the generation of toxic metabolites, and alleviating liver injury. 相似文献
107.
《Arabian Journal of Chemistry》2022,15(11):104242
Human immunodeficiency virus (HIV) especially HIV-1 infection and its progression to acquired immune deficiency syndrome (AIDS) remains a significant global health challenge. The advent of the highly active antiretroviral therapy (HAART) has greatly extended the life expectancy of patients living with HIV, but it has become evident that long-term HAART will not eliminate the HIV reservoir and cure the infection. Moreover, the drug resistance and undesirable side effects hamper efficacious therapy, creating an urgent need to develop novel, more effective and less toxic anti-HIV therapeutics. Imidazole, oxazole and thiazole with two heteroatoms at meta-position of five-membered rings are fascinating structures and constitute an important class of heterocycles in drug discovery. Their derivatives could exert the anti-HIV activity through diverse mechanisms and possess promising antiviral activity against both drug-sensitive and drug-resistant HIV strains. This review summarizes the research progress made regarding the anti-HIV potential of imidazole, oxazole and thiazole hybrids, and the structure–activity relationships (SARs) are also discussed to facilitate further rational design of more effective candidates, covering articles published from 2012 to 2022. 相似文献
108.
Maya M. Zaharieva Lyudmila L. Dimitrova Stanislav Philipov Ivanka Nikolova Neli Vilhelmova Petar Grozdanov Nadya Nikolova Milena Popova Vassya Bankova Spiro M. Konstantinov Dimitrina Zheleva-Dimitrova Hristo M. Najdenski 《Molecules (Basel, Switzerland)》2022,27(1)
This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC–HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33–25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC–HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations. 相似文献
109.
Lipopolysaccharide (LPS) is an endotoxin that plays a crucial role in septic acute kidney injury (AKI). Hispidulin is a natural flavonoid that possesses various biological activities. Recent studies have shown that hispidulin administration alleviates various inflammatory diseases in animal models. This study aimed to investigate the renoprotective effect of hispidulin on LPS-induced AKI. Male C57BL/6 mice were administered LPS (10 mg/kg) with or without hispidulin (50 mg/kg). Hispidulin administration attenuated renal dysfunction, histological alterations, and the upregulation of neutrophil gelatinase-associated lipocalin. This flavonoid also reduced cytokine production and Toll-like receptor 4 expression, inhibited nuclear factor-κB and mitogen-activated protein kinase cascades, and alleviated immune cell infiltration. The oxidation of lipids and DNA was also inhibited by hispidulin administration. This antioxidant effect of hispidulin was associated with the downregulation of NADPH oxidase 4, the activation of catalase and superoxide dismutase activities, and the restoration of glutathione levels. Moreover, hispidulin administration attenuated tubular cell apoptosis by inhibiting caspase-3 pathway. These data suggest that hispidulin ameliorates endotoxin-induced kidney injury by suppressing inflammation, oxidative stress, and tubular cell death. 相似文献
110.
Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs. 相似文献