首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2400篇
  免费   631篇
  国内免费   92篇
化学   2572篇
晶体学   15篇
力学   146篇
综合类   3篇
数学   31篇
物理学   356篇
  2024年   3篇
  2023年   35篇
  2022年   72篇
  2021年   86篇
  2020年   183篇
  2019年   104篇
  2018年   102篇
  2017年   67篇
  2016年   226篇
  2015年   196篇
  2014年   180篇
  2013年   190篇
  2012年   152篇
  2011年   159篇
  2010年   117篇
  2009年   167篇
  2008年   156篇
  2007年   148篇
  2006年   141篇
  2005年   86篇
  2004年   102篇
  2003年   85篇
  2002年   38篇
  2001年   34篇
  2000年   46篇
  1999年   29篇
  1998年   32篇
  1997年   25篇
  1996年   21篇
  1995年   16篇
  1994年   13篇
  1993年   16篇
  1992年   10篇
  1991年   12篇
  1990年   8篇
  1989年   5篇
  1988年   14篇
  1987年   5篇
  1985年   10篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有3123条查询结果,搜索用时 937 毫秒
971.
The tin(II) complexes {LOx}Sn(X) ({LOx}?=aminophenolate ancillary) containing amido ( 1 – 4 ), chloro ( 5 ), or lactyl ( 6 ) coligands (X) promote the ring‐opening polymerization (ROP) of cyclic esters. Complex 6 , which models the first insertion of L ‐lactide, initiates the living ROP of L ‐LA on its own, but the amido derivatives 1 – 4 require the addition of alcohol to do so. Upon addition of one to ten equivalents of iPrOH, precatalysts 1 – 4 promote the ROP of trimethylene carbonate (TMC); yet, hardly any activity is observed if tert‐butyl (R)‐lactate is used instead of iPrOH. Strong inhibition of the reactivity of TMC is also detected for the simultaneous copolymerization of L ‐LA and TMC, or for the block copolymerization of TMC after that of L ‐LA. Experimental and computational data for the {LOx}Sn(OR) complexes (OR=lactyl or lactidyl) replicating the active species during the tin(II)‐mediated ROP of L ‐LA demonstrate that the formation of a five‐membered chelate is largely favored over that of an eight‐membered one, and that it constitutes the resting state of the catalyst during this (co)polymerization. Comprehensive DFT calculations show that, out of the four possible monomer insertion sequences during simultaneous copolymerization of L ‐LA and TMC: 1) TMC then TMC, 2) TMC then L ‐LA, 3) L ‐LA then L ‐LA, and 4) L ‐LA then TMC, the first three are possible. By contrast, insertion of L ‐LA followed by that of TMC (i.e., insertion sequence 4) is endothermic by +1.1 kcal mol?1, which compares unfavorably with consecutive insertions of two L ‐LA units (i.e., insertion sequence 3) (?10.2 kcal mol?1). The copolymerization of L ‐LA and TMC thus proceeds under thermodynamic control.  相似文献   
972.
The reactions of dialumane [L(thf)Al? Al(thf)L] ( 1 , L=[{(2,6‐iPr2C6H3)NC(Me)}2]2?) with stilbene and styrene afforded the oxidation/insertion products [L(thf)Al(CH(Ph)? CH(Ph))AlL] ( 2 ) and [L(thf)Al(CH(Ph)? CH2)Al(thf)L] ( 3 ), respectively. In the presence of Na metal, precursor 1 reacted with butadienes, possibly through the reduced “dialumene” or the “carbene‐like” :AlL species, to yield aluminacyclopentenes [LAl(CH2C(Me)?C(Me)CH2)Na]n ( 4 a ) and [Na(dme)3][LAl(CH2C(Me)?CHCH2)] ( 4 b , dme=dimethoxyethane) as [1+4] cycloaddition products, as well as the [2+4] cycloaddition product 1,6‐dialumina‐3,8‐cyclodecadiene, [{Na(dme)}2][LAl(CH2C(Me)?C(Me)CH2)2AlL] ( 5 ). The possible mechanisms of the cycloaddition reactions were studied by using DFT computations.  相似文献   
973.
Abstract

The preparation of cholesteryl phosphorodichloridite (2) is described; this compound with aniline (2 mol. equiv.) gave the N-phenylphosphoramidochloridite (5) and the latter by condensation with water afforded the N-phenyl-amidophosphite (6).

Similarly the N-phenylphosphoramidochloridite (5) with morpholine gave the morpholidite (7); phenylhydrazine gave the hydrazinophosphite (8) and ethanol the amidoethyl phosphite (9). Cholesteryl phosphorodichloridite (2) by reaction with aniline (4 mol. equiv.) gave the N,N 1?diphenylphosphorodiamidite (10).

The reaction of cholesteryl phosphorodichloridite (2) with methanol and ethanol are discussed in relation to the analogous reactions with cholesteryl phosphorodichloridate. Boiling ethanol gave cholesterol as the only isolatable product but at room temperature a low yield of the diethylphosphite (11; R=Et) was obtained. The yield of the phosphite was greatly increased in the presence of base. Similarly the dichloridite 2 with boiling water gave cholesterol (1), but at room temperature cholesteryl phosphite 3 was isolated: the mechanistic basis for these different results is briefly discussed.

trans-4-t-Butylcyclohexanol with phosphorus trichloride gave the phosphorodichloridite, which was characterised by conversion to the corresponding N,N 1?diphenylphosphorodiamidite.  相似文献   
974.
以CoCl2、Na2CO3为原料, 以油酸钠(SOA)为表面活性剂, 采用水热-热分解法合成了纯相尖晶石结构的Co3O4粉体。利用TG-DTA, XRD和SEM等手段跟踪反应过程, 研究了不同水热时间对产物形貌和结构的影响, 并根据实验结果分析了可能的反应机理及结构对光催化性能的影响。实验结果表明:制备前驱体的水热时间是影响产物形貌的关键因素, 并且终产物的结构形貌很大程度上决定了其光催化性能。  相似文献   
975.
In Suzuki–Miyaura reactions, anionic bases F? and OH? (used as is or generated from CO32? in water) play multiple antagonistic roles. Two are positive: 1) formation of trans‐[Pd(Ar)F(L)2] or trans‐[Pd(Ar)‐ (L)2(OH)] (L=PPh3) that react with Ar′B(OH)2 in the rate‐determining step (rds) transmetallation and 2) catalysis of the reductive elimination from intermediate trans‐[Pd(Ar)(Ar′)(L)2]. Two roles are negative: 1) formation of unreactive arylborates (or fluoroborates) and 2) complexation of the OH group of [Pd(Ar)(L)2(OH)] by the countercation of the base (Na+, Cs+, K+).  相似文献   
976.
The reactivity of 3‐hydroxy‐4‐(1,2‐dihydroxyethyl)‐β‐lactams with regard to the oxidant sodium periodate was evaluated, unexpectedly resulting in the exclusive formation of new 2‐hydroxy‐1,4‐oxazin‐3‐ones through a C3? C4 bond cleavage of the intermediate 4‐formyl‐3‐hydroxy‐β‐lactams followed by a ring expansion. This peculiar transformation stands in sharp contrast with the known NaIO4‐mediated oxidation of 3‐alkoxy‐ and 3‐phenoxy‐4‐(1,2‐dihydroxyethyl)‐β‐lactams, which exclusively leads to the corresponding 4‐formyl‐β‐lactams without a subsequent ring enlargement. In addition, this new class of functionalized oxazin‐3‐ones was further evaluated for its potential use as building blocks in the synthesis of a variety of differently substituted oxazin‐3‐ones, morpholin‐3‐ones and pyrazinones. Furthermore, additional insights into the mechanism and the factors governing this new ring‐expansion reaction were provided by means of density functional theory calculations.  相似文献   
977.
Cinchona alkaloids catalyze the oxa‐Michael cyclization of 4‐(2‐hydroxyphenyl)‐2‐butenoates to benzo‐2,3‐dihydrofuran‐2‐yl acetates and related substrates in up to 99 % yield and 91 % ee (ee=enantiomeric excess). Catalyst and substrate variation studies reveal an important role of the alkaloid hydroxy group in the reaction mechanism, but not in the sense of a hydrogen‐bonding activation of the carbonyl group of the substrate as assumed by the Hiemstra–Wynberg mechanism of bifunctional catalysis. Deuterium labeling at C‐2 of the substrate shows that addition of RO? H to the alkenoate occurs with syn diastereoselectivity of ≥99:1, suggesting a mechanism‐based specificity. A concerted hydrogen‐bond network mechanism is proposed, in which the alkaloid hydroxy group acts as a general acid in the protonation of the α‐carbanionic center of the product enolate. The importance of concerted hydrogen‐bond network mechanisms in organocatalytic reactions is discussed. The relative stereochemistry of protonation is proposed as analytical tool for detecting concerted addition mechanisms, as opposed to ionic 1,4‐additions.  相似文献   
978.
The photochemical reaction of a pyrimidine and a ketone occurs either as a Paternò–Büchi (PB) reaction or as energy transfer (ET) from the triplet ketone to the pyrimidine. It is rare for the two types of reactions to occur concurrently, and their competitive mechanism remains unknown. In this work, two classes of products, regioisomeric oxetane(s) ( 2 , 3 ) from a PB reaction and three isomeric dimers of 5‐fluoro‐1,3‐dimethyl uracil (FDMU) ( 4 – 6 ) from a photosensitized dimerization of FDMU, are obtained through the UV irradiation of FDMU with various benzophenones (BPs). The ratio of the two products (oxetanes to dimers) reveals that the two competitive reactions depend strongly on the triplet energy levels (ET) of the BPs. The BPs with higher ET values lead to higher proportions of dimers, whereas those with lower ET values give higher proportions of oxetane(s), with the generation of just two regioisomeric oxetanes for the BP with the lowest ET of the eight BPs investigated. The ratio of the two oxetanes ( 2 : 3 ) decreases with the BP ET value. The competitive mechanism for the two types of photochemical reactions is demonstrated through quenching experiments and investigation of temperature effects. Kinetic analysis shows that the rate constants of the two [2+2] photocycloadditions are comparable. Furthermore, in combination with the results of previous studies, we have gained insight into the dependence of the photochemical type and the regioselectivity in the PB reaction on the triplet energy gaps (ΔE) between the pyrimidines and ketones. For ketones with higher ET values than the pyrimidines, the photochemical reaction is a photosensitized dimerization of the pyrimidine. In the opposite case, a PB reaction occurs, and the lower the ET of the ketones, the lower the ratio of oxetanes ( 2 : 3 ). When the ET of values of the ketones are close to those of the pyrimidines, the two reactions occur concurrently, and the higher the ET of the ketones, the higher the proportion of the dimers. The ratio of oxetanes ( 2 : 3 ) decreases with the ET value of the BPs.  相似文献   
979.
Yttrocene‐carboxylate complex [Cp*2Y(OOCArMe)] (Cp*=C5Me5, ArMe=C6H2Me3‐2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare‐earth‐metal carboxylates. Equimolar reactions with bis‐neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium‐aluminum‐hydride complex [{Cp*2Y(μ‐H)AlMe2(μ‐H)AlMe2(μ‐CH3)}2] could be isolated, which features a 12‐membered‐ring structure. The adduct complexes [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] display identical 1J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar 89Y NMR shifts of δ=?88.1 ppm (R=CH2SiMe3) and δ=?86.3 ppm (R=Me) in the 89Y DEPT45 NMR experiments.  相似文献   
980.
The complete reaction mechanism and kinetics of the Wacker oxidation of ethene in water under low [Cl?], [PdII], and [CuII] conditions are investigated in this work by using ab initio molecular dynamics. These extensive simulations shed light on the molecular details of the associated individual steps, along two different reaction routes, starting from a series of ligand‐exchange processes in the catalyst precursor PdCl42? to the final aldehyde‐formation step and the reduction of PdII. Herein, we report that hydroxylpalladation is not the rate‐determining step and is, in fact, in equilibrium. The newly proposed rate‐determining step involves isomerization and follows the hydroxypalladation step. The mechanism proposed herein is shown to be in excellent agreement with the experimentally observed rate law and rate. Moreover, this mechanism is in consensus with the observed kinetic isotope effects. This report further confirms the outer‐sphere (anti) hydroxypalladation mechanism. Our calculations also ratify that the final product formation proceeds through a reductive elimination, assisted by solvent molecules, rather than through β‐hydride elimination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号