首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   25篇
  国内免费   5篇
化学   202篇
力学   1篇
物理学   24篇
  2023年   1篇
  2022年   3篇
  2021年   11篇
  2020年   16篇
  2019年   17篇
  2018年   2篇
  2017年   5篇
  2016年   11篇
  2015年   9篇
  2014年   15篇
  2013年   26篇
  2012年   11篇
  2011年   15篇
  2010年   12篇
  2009年   13篇
  2008年   13篇
  2007年   11篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1989年   2篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
221.
J E Lynn 《Pramana》1989,33(1):33-84
Fission theory first developed within the framework of the liquid drop model. Shell model concepts were introduced into fission theory much later than they were in nuclear structure theory, but then with spectacular success in explaining striking experimental results then emerging in actinide fission. In the last two decades the complex topography of the fission barrier that is the result of shell model theory has been a major theme in the expanding knowledge of fission, most experimental data finding a natural explanation within this theme. The development of the concept of shell model structure in the fission barrier is outlined in this review.  相似文献   
222.
The synthesis and evaluation of three novel bis-1,2,4-triazine ligands containing five-membered aliphatic rings are reported. Compared to the more hydrophobic ligands 1 – 3 containing six-membered aliphatic rings, the distribution ratios for relevant f-block metal ions were approximately one order of magnitude lower in each case. Ligand 10 showed an efficient, selective and rapid separation of AmIII and CmIII from nitric acid. The speciation of the ligands with trivalent f-block metal ions was probed using NMR titrations and competition experiments, time-resolved laser fluorescence spectroscopy and X-ray crystallography. While the tetradentate ligands 8 and 10 formed LnIII complexes of the same stoichiometry as their more hydrophobic analogues 2 and 3 , significant differences in speciation were observed between the two classes of ligand, with a lower percentage of the extracted 1:2 complexes being formed for ligands 8 and 10 . The structures of the solid state 1:1 and 1:2 complexes formed by 8 and 10 with YIII, LuIII and PrIII are very similar to those formed by 2 and 3 with LnIII. Ligand 10 forms CmIII and EuIII 1:2 complexes that are thermodynamically less stable than those formed by ligand 3 , suggesting that less hydrophobic ligands form less stable AnIII complexes. Thus, it has been shown for the first time how tuning the cyclic aliphatic part of these ligands leads to subtle changes in their metal ion speciation, complex stability and metal extraction affinity.  相似文献   
223.
224.
225.
The practical goal to measure and understand the thermodynamic properties of molecules and materials containing f-elements is often achieved through indirect methods. Of the characterization tools available to inorganic chemists, few are more powerful than X-ray crystallography. Yet for lanthanides and actinides, interpretation of a bond length is a challenging undertaking that involves a complex interplay of steric and electronic forces. In this Concept article, we perform an analysis of selected examples in which structural criteria alone have been used to draw qualitative conclusions about chemical bonding. In other instances for which such an analysis is not valid, thermodynamic information is evaluated side by side with structural data to provide reasonable interpretations of a covalent/ionic mode of bonding. A geometric variation larger than 3σ is not necessarily correlated to a change in bonding, nor is an increase in bond energy related to a bond with more covalent character. However, careful consideration of thermodynamic information can lead to reasonable interpretations of electronic structure, and may provide a more reliable benchmark for the theoretical methods which can describe f-elements.  相似文献   
226.
The synthesis, structure, and reactivity of a base-free thorium terminal-imido metallocene have been comprehensively studied. Treatment of thorium metallocenes [{η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)}(2)ThMe(2)] and [{η(5)-1,3-(Me(3)C)(2)C(5)H(3)}(2)ThMe(2)] with RNH(2) gives diamides [{η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)}(2)Th(NHR)(2)] (R=Me (7), p-tolyl (8)) and [{η(5)-1,3-(Me(3)C)(2)C(5)H(3)}(2)Th(NH-p-tolyl)(2)] (9), respectively. Diamides 7 and 9 do not eliminate methylamine or p-toluidine, but sublime without decomposition at 150 °C under vacuum (0.01 mmHg), whereas diamide 8 is converted at 140 °C/0.01 mmHg into the primary amine p-tolyl-NH(2) and [{η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)}(2)Th=N(p-tolyl)] (10), which may be isolated in pure form. Imido metallocene 10 does not react with electrophiles such as alkylsilyl halides; however, it reacts with electron-rich or unsaturated reagents. For example, reaction of 10 with sulfur affords the metallacycle [{η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)}(2)Th{N(p-tolyl)S-S}]. Imido 10 is an important intermediate in the catalytic hydroamination of internal alkynes, and an efficient catalyst for the trimerization of PhCN. Density functional theory (DFT) studies provide a detailed understanding of the experimentally observed reactivity patterns.  相似文献   
227.
Prof. Ran Friedman 《Chemphyschem》2023,24(2):e202200516
The use of actinides for medical, scientific and technological purposes has gained momentum in the recent years. This creates a need to understand their interactions with biomolecules, both at the interface and as they become complexed. Calculation of the Gibbs binding energies of the ions to biomolecules, i. e., the Gibbs energy change associated with a transfer of an ion from the water phase to its binding site, could help to understand the actinides’ toxicities and to design agents that bind them with high affinities. To this end, there is a need to obtain accurate reference values for actinide hydration, that for most actinides are not available from experiment. In this study, a set of ionic radii is developed that enables future calculations of binding energies for Pu3+ and five actinides with renewed scientific and technological interest: Ac3+, Am3+, Cm3+, Bk3+ and Cf3+. Reference hydration energies were calculated using quantum chemistry and ion solvation theory and agree well for all ions except Ac3+, where ion solvation theory seems to underestimate the magnitude of the Gibbs hydration energy. The set of radii and reference energies that are presented here provide means to calculate binding energies for actinides and biomolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号