首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   6篇
  国内免费   2篇
化学   59篇
力学   1篇
综合类   2篇
物理学   14篇
  2023年   1篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   8篇
  2006年   1篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
11.
The actin cytoskeleton drives cell locomotion and tissue remodeling. The invention of live-cell fluorescence single-molecule imaging opened a window for direct viewing of the actin remodeling processes in the cell. Since then, a number of unanticipated molecular functions have been revealed. One is the mechanism of F-actin network breakdown. In lamellipodia, one third of newly polymerized F-actin disassembles within 10 seconds. This fast F-actin turnover is facilitated by the filament severing/disrupting activity involving cofilin and AIP1. Astoundingly fast dissociation kinetics of the barbed end interactors including capping protein suggests that F-actin turnover might proceed through repetitive disruption/reassembly of the filament near the barbed end. The picture of actin polymerization is also being revealed. At the leading edge of the cell, Arp2/3 complex is highly activated in a narrow edge region. In contrast, mDia1 and its related Formin homology proteins display a long-distance directional molecular movement using their processive actin capping ability. Recently, these two independently-developed projects converged into a discovery of the spatiotemporal coupling between mDia1-mediated filament nucleation and actin disassembly. Presumably, the local concentration fluctuation of G-actin regulates the actin nucleation efficiency of specific actin nucleators including mDia1. Pharmacological perturbation and quantitative molecular behavior analysis synergize to reveal hidden molecular linkages in the actin turnover cycle and cell signaling.  相似文献   
12.
13.
Deliberate digression from the blueprint of the total syntheses of latrunculin A (1) and latrunculin B (2) reported in the accompanying paper allowed for the preparation of a focused library of "latrunculin-like" compounds, in which all characteristic structural elements of these macrolides were subject to pertinent molecular editing. Although all previously reported derivatives of 1 and 2 were essentially devoid of any actin-binding capacity, the synthetic compounds presented herein remain fully functional. One of the designer molecules with a relaxed macrocyclic backbone, that is compound 44, even surpasses latrunculin B in its effect on actin while being much easier to prepare. This favorable result highlights the power of "diverted total synthesis" as compared to the much more widely practiced chemical modification of a given lead compound by conventional functional group interconversion. A computational study was carried out to rationalize the observed effects. The analysis of the structure of the binding site occupied by the individual ligands on the G-actin host shows that latrunculin A and 44 both have similar hydrogen-bond network strengths and present similar ligand distortion. In contrast, the H-bond network is weaker for latrunculin B and the distortion of the ligand from its optimum geometry is larger. From this, one may expect that the binding ability follows the order 1 >/= 44 > 2, which is in accord with the experimental data. Furthermore, the biological results provide detailed insights into structure/activity relationships characteristic for the latrunculin family. Thus, it is demonstrated that the highly conserved thiazolidinone ring of the natural products can be replaced by an oxazolidinone moiety, and that inversion of the configuration at C16 (latrunculin B numbering) is also well accommodated. From a purely chemical perspective, this study attests to the maturity of ring-closing alkyne metathesis (RCAM) catalyzed by a molybdenum alkylidyne complex generated in situ, which constitutes a valuable tool for advanced organic synthesis and natural product chemistry.  相似文献   
14.
A comparative investigation shows that hydroxylated 10-membered lactones modeled around the fungal metabolites microcarpalide (1) and pinolidoxin (2) are endowed with selective actin-binding properties. Although less potent than the marine natural product latrunculin A, which represents the standard in the field, nonenolides of this type are significantly less toxic and accommodate substantial structural editing. Most notable is the fact that even an intramolecular transesterification with formation of a hydroxylated butanolide skeleton does not annihilate their microfilament disrupting capacity. This finding calls for a reinvestigation of the biological profile of other fungal metabolites that embody a similar motif. Microcarpalide (1) serving as the calibration point for this comparative study was prepared by total synthesis based on ring-closing metathesis (RCM) as the key step. The chosen route favorably compares to previous approaches to this target and provides further support for the notion that the (E,Z)-configuration of a medium-sized cycloalkene can be controlled by proper choice of the catalyst as previously outlined by our group. 9-epi-Microcarpalide 26 and furanone 27 as representative examples of the "natural productlike" compounds investigated herein have been characterized by crystal structure analysis.  相似文献   
15.
Based on techniques for single molecule imaging and nanomanipulation by optical tweezers, we have developed a new technique that allows simultaneous measurement of individual ATPase and mechanical reactions from a single myosin molecule during force generation. We show how the ATPase reaction couples to the mechanical reaction directly at the single molecule level. The results show that the myosin head can produce force even after releasing the bound nucleotide, probably ADP, suggesting that the chemical energy driven by ATP hydrolysis can be hysteretically stored in the myosin molecule. This view does not support a widely accepted hypothesis in which the force generation is tightly coupled to ligand dissociation.This paper was originally presented as an invited paper at the seventh Meeting on Near Field Optics, which was held on July 1, 1998 at Nagoya University, Nagoya, organized by the Research Group on Near Field Optics of the Optical Society of Japan, an affiliate of the Japan Society of Applied Physics.  相似文献   
16.
Frutalin is a plant lectin with beneficial immunobiological action, although the access to its active form is still restricted. Moreover, there is a knowledge gap on isoform activity and glycosylation impact on its bioactivity, and recombinant production protocols were seen as ineffective. Here, a simpler and faster production and purification protocol was developed, attaining a yield of purified frutalin 3.3-fold higher than that obtained previously. Hemagglutination assays confirmed that this frutalin isoform could not agglutinate rabbit erythrocytes, while maintaining the native tetrameric structure, as indicated by DLS analysis, and strong interaction with methyl-alpha-galactose, in fluorescence spectroscopy studies. The cytotoxicity of the recombinant frutalin isoform was shown in a broad panel of human cancer cells: colon (HCT116), melanoma (A375), triple-negative breast cancer (MDA-MB-231), and ovarian (IGROV-1). Treatment with 8.5–11.8 μM TrxFTL reduced proliferation of all cancer cells to half in 48 h. This anti-proliferative effect encompasses the p53 pathway since it was significantly reduced in p53-null colon cancer cells (HCT116 p53−/−; GI50 of 25.0 ± 3.0 μM), when compared to the isogenic p53-positive cells (HCT116 p53+/+; GI50 of 8.7 ± 1.8 μM; p < 0.002). This recombinantly produced frutalin isoform has relevant cytotoxic effect and its biological activity is not dependent on glycosylation. The developed E. coli production and purification protocol generates high yield of non-glycosylated frutalin isoform with potent cytotoxic activity, enabling the development of novel anticancer p53-targeting therapies.  相似文献   
17.
布朗动力学理论模拟动态肌动蛋白纤维的增长   总被引:1,自引:0,他引:1  
郭坤琨  韩文驰 《化学学报》2011,69(2):145-152
肌动蛋白的聚合耦合三磷酸腺酐(ATP)分子水解成二磷酸腺苷(ADP)分子和磷酸(Pi)的释放两个过程. 因此, 肌动蛋白纤维上的原聚体存在三种不同状态, 即分别结合ATP, ADP/Pi和ADP分子. 原聚体的不同状态导致纤维具有不同的空间图谱, 这些状态的空间分布将影响纤维的各种行为. 为此,建立了相应的分子模型,在布朗动力学模拟中实现了遵循时间演化的连续马尔可夫随机过程的解聚和水解反应; 重点阐述了如何实现纤维两端的聚合和解聚达到化学平衡的方法, 并系统研究了纤维在结合ATP分子的肌动蛋白单体溶液中的增长行为.  相似文献   
18.
19.
Actin cytoskeleton has been known to control and/or be associated with chondrogenesis. Staurosporine and cytochalasin D modulate actin cytoskeleton and affect chondrogenesis. However, the underlying mechanisms for actin dynamics regulation by these agents are not known well. In the present study, we investigate the effect of staurosporine and cytochalasin D on the actin dynamics as well as possible regulatory mechanisms of actin cytoskeleton modulation. Staurosporine and cytochalasin D have different effects on actin stress fibers in that staurosporine dissolved actin stress fibers while cytochalasin D disrupted them in both stress forming cells and stress fiber-formed cells. Increase in the G-/F-actin ratio either by dissolution or disruption of actin stress fiber is critical for the chondrogenic differentiation. Cytochalasin D reduced the phosphorylation of cofilin, whereas staurosporine showed little effect on cofilin phosphorylation. Either staurosporine or cytochalasin D had little effect on the phosphorylation of myosin light chain. These results suggest that staurosporine and cytochalasin D employ different mechanisms for the regulation of actin dynamics and provide evidence that removal of actin stress fibers is crucial for the chondrogenic differentiation.  相似文献   
20.
The analysis of glycoprotein isoforms is of high interest in the biomedical field and clinical chemistry. Many studies have demonstrated that some glycoprotein isoforms could serve as biomarkers for several major diseases, such as cancers and vascular diseases, among others. Capillary zone electrophoresis (CZE) is a well-established technique to separate glycoprotein isoforms, however, it suffers from limited sensitivity when UV-Vis detection is used. On the other hand, with laser-induced fluorescence (LIF) detection, derivatization reaction to render the proteins fluorescent can destroy the resolution of the isoforms. In this work, a derivatization procedure through the thiol groups of glycoproteins using either 5-(iodoacetamide) fluorescein (5-IAF) or BODIPY iodoacetamide is presented with the model protein of alpha-1-acid glycoprotein (AGP). The derivatization process presented enabled high-resolution analysis of AGP isoforms by CZE-LIF. The derivatization procedure was successfully applied to label AGP from samples of serum and secretome of artery tissue, enabling the separation of the AGP isoforms by CE-LIF in natural samples at different concentration levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号