全文获取类型
收费全文 | 1475篇 |
免费 | 393篇 |
国内免费 | 324篇 |
专业分类
化学 | 1904篇 |
晶体学 | 8篇 |
力学 | 21篇 |
综合类 | 3篇 |
数学 | 3篇 |
物理学 | 253篇 |
出版年
2024年 | 30篇 |
2023年 | 38篇 |
2022年 | 104篇 |
2021年 | 171篇 |
2020年 | 339篇 |
2019年 | 139篇 |
2018年 | 119篇 |
2017年 | 75篇 |
2016年 | 173篇 |
2015年 | 133篇 |
2014年 | 130篇 |
2013年 | 112篇 |
2012年 | 69篇 |
2011年 | 58篇 |
2010年 | 29篇 |
2009年 | 59篇 |
2008年 | 70篇 |
2007年 | 59篇 |
2006年 | 78篇 |
2005年 | 48篇 |
2004年 | 37篇 |
2003年 | 42篇 |
2002年 | 21篇 |
2001年 | 16篇 |
2000年 | 11篇 |
1999年 | 5篇 |
1998年 | 10篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1994年 | 3篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有2192条查询结果,搜索用时 15 毫秒
71.
This review presents the recent progress in carbonyl polymeric electrode materials for lithium-ion batteries, sodium-ion batteries and magnesiumion batteries. This comprehensive review is expected to be helpful for arousing more interest of organic materials for metal-ion batteries and designing novel battery materials with high performance. 相似文献
72.
三元镍钴锰正极材料是一类非常重要的正极材料,具有性能优于钴酸锂而成本远远低于钴酸锂、能量密度远远高于磷酸铁锂等重要优点,正在逐渐成为汽车动力电池的主流正极材料。但是,三元镍钴锰正极材料也存在循环稳定性不足、大电流密度放电性能不佳等问题。围绕解决这些问题并进一步提升三元镍钴锰正极材料的性能,近年来国内外在材料制备技术以及改性技术方面开展了大量的研究工作,取得了若干令人瞩目的研究成果。本文从材料制备方法、包覆修饰和掺杂改性三个方面,介绍了三元镍钴锰正极材料制备技术及改性技术的研究进展,在此基础上,对三元镍钴锰正极材料的未来发展方向作出展望。 相似文献
73.
Inside Cover: Ion–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode (Angew. Chem. Int. Ed. 3/2018) 下载免费PDF全文
74.
Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium–Oxygen Batteries 下载免费PDF全文
Wanwan Wang Dr. Nien‐Chu Lai Zhuojian Liang Yu Wang Prof. Yi‐Chun Lu 《Angewandte Chemie (International ed. in English)》2018,57(18):5042-5046
Rechargeable potassium–oxygen (K‐O2) batteries promise to provide higher round‐trip efficiency and cycle life than other alkali–oxygen batteries with satisfactory gravimetric energy density (935 Wh kg?1). Exploiting a strong electron‐donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO2), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO‐based K‐O2 battery demonstrates a much higher energy efficiency and stability than the glyme‐based electrolyte. A universal KO2 growth model is developed and it is demonstrated that the ideal solvent for K‐O2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K‐O2 batteries. 相似文献
75.
Nika Mahne Sara E. Renfrew Prof. Bryan D. McCloskey Dr. Stefan A. Freunberger 《Angewandte Chemie (International ed. in English)》2018,57(19):5529-5533
Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal‐O2 batteries, and are believed to form and decompose reversibly in metal‐O2/CO2 cells. In these cathodes, Li2CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+. However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2CO3→4 Li++4 e?+2 CO2+O2, is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1O2) forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. These results have substantial implications for the long‐term cyclability of batteries: they underpin the importance of avoiding 1O2 in metal‐O2 batteries, question the possibility of a reversible metal‐O2/CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition‐metal cathodes with residual Li2CO3. 相似文献
76.
Qiuwei Shi Yiren Zhong Min Wu Prof. Hongzhi Wang Prof. Hailiang Wang 《Angewandte Chemie (International ed. in English)》2018,57(29):9069-9072
Developing Na metal anodes that can be deeply cycled with high efficiency for a long time is a prerequisite for rechargeable Na metal batteries to be practically useful despite their notable advantages in theoretical energy density and potential low cost. Their high chemical reactivity with the electrolyte and tendency for dendrite formation are two major issues limiting the reversibility of Na metal electrodes. In this work, we introduce for the first time potassium bis(trifluoromethylsulfonyl)imide (KTFSI) as a bifunctional electrolyte additive to stabilize Na metal electrodes, in which the TFSI? anions decompose into lithium nitride and oxynitrides to render a desirable solid electrolyte interphase layer while the K+ cations preferentially adsorb onto Na protrusions and provide electrostatic shielding to suppress dendritic deposition. Through the cooperation of the cations and anions, we have realized Na metal electrodes that can be deeply cycled at a capacity of 10 mAh cm?2 for hundreds of hours. 相似文献
77.
Dr. Xiulin Fan Dr. Fei Wang Dr. Xiao Ji Ruixing Wang Dr. Tao Gao Singyuk Hou Dr. Ji Chen Tao Deng Dr. Xiaogang Li Dr. Long Chen Dr. Chao Luo Luning Wang Prof. Chunsheng Wang 《Angewandte Chemie (International ed. in English)》2018,57(24):7146-7150
Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (?40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries. 相似文献
78.
Solid‐State Electrolyte Anchored with a Carboxylated Azo Compound for All‐Solid‐State Lithium Batteries 下载免费PDF全文
Dr. Chao Luo Xiao Ji Dr. Ji Chen Dr. Karen J. Gaskell Xinzi He Dr. Yujia Liang Prof. Jianjun Jiang Prof. Chunsheng Wang 《Angewandte Chemie (International ed. in English)》2018,57(28):8567-8571
Organic electrode materials are promising for green and sustainable lithium‐ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all‐solid‐state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li3PS4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4‐(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. 相似文献
79.
通过二维层状Ti_3C_2的原位水热氧化和气相硫化反应,制备了硫掺杂二氧化钛/碳化钛(S-TiO_2/Ti_3C_2)复合材料,并用于电化学储锂。结果表明,二氧化钛纳米颗粒原位生长在碳化钛片层上,且硫成功掺杂到二氧化钛中。这种S-TiO_2/Ti_3C_2复合结构作为锂离子电池的负极材料,表现出较好的电化学性能。在0.2 A/g的电流密度下循环100圈后,放电比容量稳定在288 m A·h/g,远高于纯Ti_3C_2和TiO_2/Ti_3C_2电极的放电比容量。S-TiO_2/Ti_3C_2复合材料表现出的较高比容量和良好的循环性能,主要归因于复合材料的特殊纳米结构优势:二氧化钛原位生长在碳化钛上,使复合材料具有稳定良好的接触界面,能够促进电子的快速转移,同时可以有效避免循环过程中两种组分的分离;硫在二氧化钛中的掺杂可以提高二氧化钛的导电性,并引入缺陷,提高反应活性。此研究工作为二维材料的原位转化及复合提供了新的思路和研究方法。 相似文献
80.
氮掺杂石墨烯的制备及其在化学储能中的研究进展 总被引:1,自引:0,他引:1
石墨烯独特的二维空间结构使其具有优异的导电性能、力学性能以及超大的比表面积,被认为是颇具潜力的新型储能材料,是目前储能研究的热点之一。 但是石墨烯易团聚、表面光滑且呈惰性而不利于与其它材料的复合,导致其应用受到限制。 石墨烯掺氮可改变其电子结构,增加表面的活性位,从而提高其应用于储能器件时的电化学性能。 本文综述了近几年氮掺杂石墨烯的制备方法以及其在超级电容器、锂离子电池、锂空电池以及锂硫电池等化学储能领域中的应用,指出了目前氮掺杂石墨烯在制备和储能应用中关注的核心问题,并对氮掺杂石墨烯的发展前景进行了展望。 相似文献