首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   0篇
  国内免费   16篇
化学   85篇
力学   14篇
数学   5篇
物理学   156篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   9篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   15篇
  2013年   11篇
  2012年   9篇
  2011年   9篇
  2010年   13篇
  2009年   19篇
  2008年   16篇
  2007年   23篇
  2006年   20篇
  2005年   8篇
  2004年   12篇
  2003年   11篇
  2002年   1篇
  2001年   11篇
  2000年   12篇
  1999年   9篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
31.
Caroline Antion 《Surface science》2007,601(10):2232-2244
Energetics and chemistry of liquid surfaces and liquid/liquid interfaces of binary A-B alloys are calculated using a subregular solution model. In this model, two macroscopic energetic parameters are used to produce an asymmetric miscibility gap. They are related to two microscopic parameters which describe the interaction energy between two atoms as a function of the composition of the first coordination shell of each atom. The impact of the asymmetry of the A-B interactions on the surface and interfacial energies and adsorption are analyzed by comparing the results obtained with this subregular model to those calculated for a regular solution. The role of the asymmetry on the prewetting and wetting transitions are also discussed. Calculations performed in the Co-Cu system are in good agreement with experimental data of surface energy.  相似文献   
32.
A review and some new results are presented for the solid-on-solid models of wetting in two dimensions (i.e., line interfaces) with an emphasis on the difference equations arising in the transfer matrix calculations for these models. Methods for solving the appropriate difference equations exactly or approximately are surveyed, including specific results for short-range, long-range power-law, and applied field-like (binding) external potentials.  相似文献   
33.
We describe two methods to impart the water repellency for the surface of cotton fabric, using a commercially available and a laboratory synthesized fluoroalkylsiloxanes. To characterize the wettability and the durability of water repellent properties of hydrophobic coating produced, we have studied the advancing water contact angles, rolling angles and the evolution of water contact angle in time during a continuous contact of the surface with the water drop. The quality of the coatings was also assessed after the washing procedure. The analysis of the wettability of hydrophobized fabrics indicated that a better effect, leading to the superhydrophobic state of the surface, was observed when the surface relief of the fabric with the coating is determined by not only the structure and braiding of the fabric, but also the additional elements of texture created by the aggregates of molecules of hydrophobic agent.  相似文献   
34.
Non-wettable surfaces with high contact angles and facile sliding angle of water droplets have received tremendous attention in recent years. The present paper describes the room temperature (∼27 °C) synthesis of dip coated water repellent silica coatings on glass substrates using iso-butyltrimethoxysilane (iso-BTMS) as a co-precursor. Emphasis is given to the influence of the hydrophobic reagent (iso-BTMS) on the water repellent properties of the silica films. Silica sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:16.53:8.26 respectively, with 0.01 M NH4F throughout the experiment and the molar ratio of iso-BTMS/TEOS (M) was varied from 0 to 0.965. The effect of M on the surface structure and hydrophobicity has been researched. The static water contact angle values of the silica films increased from 65° to 140° and water sliding angle values decreased from 42° to 16° with an increase in the M value from 0 to 0.965. The water repellent silica films are thermally stable up to a temperature of 280 °C and above this temperature the film shows hydrophilic behavior. The water repellent silica films were characterized by the Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   
35.
For the purpose of studying some physical properties in addition to the mechanism of the melting phenomena, five bismuth alloys Bi55.5Pb44.5, Bi50Pb25Sn25, Bi50Pb25Cd25, Bi50Pb25Sn18.75Cd6.25 and Bi50Pb25Sn6.25Cd18.75 of melting points in the range from 338.5 to 396.5 K were prepared and studied by different techniques. The near-surface materials have been characterized by microhardness together with the wetting characteristics on CuZn30 substrates as a function of time. The mechanism of melting from the point of view of the order of reaction (n) was explored by applying two different techniques, namely, differential thermal analysis and the electrical resistivity as a function of temperature.  相似文献   
36.
The present study deals with the creation of nano-rough surfaces with stable and controlled high hydrophobicity. These surfaces were obtained by combining the ion track etching technique with a simple functionalization by grafting perfluoroctyltrichlorosilane (PFOTS) molecules. Surface morphology was investigated by AFM observations which evidenced a self-affine fractal structure with a fractal dimension Df ~ 2.6. The study of the wetting properties of these surfaces allowed to elucidate the conditions for observing a high hydrophobicity phenomenon and to predict the contact angle values for surfaces designed at a nanometric scale.  相似文献   
37.
We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.  相似文献   
38.
润湿特性对超级电容器储能性能有着至关重要的影响。借助分子动力学模拟,本文研究了润湿特性对超级电容器储能动力学行为的影响。以石墨烯和晶体铜作为疏电解液和亲电解液电极材料。结果表明,在充电过程中,亲电解液铜电极呈现出非对称的U型微分电容曲线,负极电容是正极的~5.77倍,不同于经典双电层理论Gouy-Chapman-Stern(对称U型)和疏电解液型。该现象与离子自由能阻力分布密切相关,负极自由能阻力远小于正极(~2倍)和疏电解液电极,进而有利于强化双电层结构对电极电压的响应能力,导致更高微分电容。通过微分离子电荷密度,本文再现了微分电容演变规律,并发现改善润湿性会显著降低双电层厚度。最后,我们指出润湿性直接影响储能微观机理,将电荷储存机制从离子吸附和交换共同主导(疏电解液)转变到离子吸附主导(亲电解液)。本文所得结论揭示了润湿特性对储能动力学行为影响的原子层级机理,对超级电容器材料设计、构筑与润湿特性调控具有重要指导意义。  相似文献   
39.
Using high-resolution atomic force microscope we observed in ambient atmosphere the slow morphological transitions of the incipient adlayer of gold grown on (0 0 0 1) sapphire substrate by pulsed laser deposition. The equivalent average uniform thickness of the gold deposition was about 0.55 Å, which is about one-fourth of its monolayer. A dynamic simulation revealed that about 10% of the gold was implanted into the substrate up to the depth of about 3.3 nm and the top monolayer of the sapphire surface was almost completely depleted of oxygen atoms due to the preferential sputtering by the plume particles. The gold adlayer transformed into a labile phase which enhanced the surface roughness and had a preferred orientation of a wavy structure during 24 h of the deposition. The auto-correlation function of this wavy structure in labile metastable phase revealed two-fold symmetry and provided a preferential size of about 4 nm (peak to peak) with a mean separation of 8 nm. At the end of about 6 days this phase was found to completely transform into an apparently de-wetted phase of beads with average in-plane diameter of ∼20 nm and height of ∼7 nm having large size distribution. Each bead was seen to have coating of a concentric corona layer, which might be that of the condensed moisture or other gaseous species from atmosphere because subjecting these samples to vacuum removed this layer. These observations shed light on the dynamics of the pulsed laser deposited metastable gold adlayer in the incipient stage of its growth on sapphire and their wetting or de-wetting mechanisms in ambient atmosphere.  相似文献   
40.
Interfaces can be called Smart and Green (S&G) when tailored such that the required technologies can be implemented with high efficiency, adaptability and selectivity. At the same time they also have to be eco-friendly, i.e. products must be biodegradable, reusable or simply more durable. Bubble and drop interfaces are in many of these smart technologies the fundamental entities and help develop smart products of the everyday life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号