首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  国内免费   6篇
化学   26篇
物理学   8篇
  2024年   2篇
  2023年   7篇
  2022年   6篇
  2021年   5篇
  2020年   6篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2010年   1篇
  2000年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
21.
随着小型化、可穿戴等特征的智能电子以及物联网传感设备的发展,新型纤维状柔性化、小型化电化学储能器件已成为重要的研究方向。同时,对纤维材料和柔性储能器件的性能提出了更高的要求,如可任意弯折、可拉伸、可折叠、高储能密度等。石墨烯纤维具有独特的结构、优异的导电性、良好机械性能和电化学性质,已证明了是一种极具前景、高性能的新型纤维状柔性储能材料。目前,研究者已开发了多种石墨烯基纤维微观结构的调控策略来进一步改进其性能。本文首先系统总结了石墨烯基纤维的制备方法和其性能提升的策略,然后详细讨论其在柔性化纤维状超级电容器、金属离子电池、热电发电机、太阳能电池和相变材料等储能领域中的最新应用进展。最后,对石墨烯基纤维在能源存储和转换领域中存在的挑战和机会进行了展望。  相似文献   
22.
Electrochemical biosensors are particularly suitable for miniaturization and integration in microfluidic devices. Applications include the detection of whole cells, cell components, proteins, and small molecules to address tasks in the fields of diagnostics and food and environmental control. Microfluidic setups range from simple channels for sample transport to channels with integrated sensing electrodes to highly sophisticated platforms with additional elements for sample preparation. The design of the microfluidics depends on both the type of detection and on the application and sample material. This review summarizes recent work on electrochemical biosensors with integrated microfluidics with the focus on developments for real sample applications, particularly those including measurements with real sample media.  相似文献   
23.
传统超声换能器存在体积大、表面刚性的缺点,无法用于人体复杂皮肤表面和可穿戴器件的设计。为使换能器具有灵活、体积小,满足可穿戴的特点,将其压电元件、电极和封装等各组成部分重组为柔性换能器。相比于传统换能器,它有两个优点:首先,不需要专业人员操作,可实现持续性的超声监控或治疗。其次,通过更全面的皮肤表面覆盖,扩大声场范围。在超声诊断方面,改善声信号采集,获得更全面的检测信息;在超声治疗方面,增加声能量沉积,提高疗效。柔性换能器使超声医疗应用场景多元化,可实现连续超声诊断或超声治疗。该文首先概述了其在设计和加工方面的最新进展,然后重点介绍了其在诊断和治疗方面的应用,最后讨论了这一领域所面临的挑战并对发展前景进行展望。  相似文献   
24.
近年来伴随着移动医疗的兴起,以及新材料、集成电路、人工智能领域的不断进步,可穿戴设备在医疗领域得到了迅猛的发展。超声技术作为一种快速、简便和安全的诊疗工具,自诞生之日起就在医疗领域有着众多应用。可穿戴超声系统综合了可穿戴设备和超声技术的优点,有着巨大的发展空间。本文概述了可穿戴超声系统的发展背景和系统组成,着重介绍了近些年来可穿戴超声系统在医疗监测和治疗领域的应用成果,并对可穿戴超声系统的发展前景进行了展望。  相似文献   
25.
混合电容器由于兼具电池高能量密度和超级电容器高功率密度的优势,成为当前储能领域的研究热点。然而,电池电极和电容电极之间容量和功率的不平衡严重限制了混合电容器的实际性能。因此,如何实现二者的有效匹配,优化器件性能是混合电容器实用化的关键。阵列电极的使用打破传统粉末电极中不导电粘结剂对电化学动力学的限制,其独特的结构为正负极的匹配提供了新策略。此专论结合新型储能器件的研究现状以及本课题组在混合电容器方面的探索,简单探讨了混合电容器的储能机理和阵列结构作为电极材料的优势,着重介绍了本课题组近年来在混合电容器领域的研究工作,针对存在的科学问题提出了相应的解决方案,阐明了阵列电极混合电容器在柔性/可穿戴电子器件等领域的应用前景,并展望了混合电容器在未来的发展方向和挑战。  相似文献   
26.
Electrospun polymeric fibers present an emerging alternative for the development of flexible electronics, enabling applications in wearable sensors and biosensors for continuous monitoring, and actuators for tissue engineering. The possibility to prepare sub-micrometric polymeric scaffolds, their processing for increasing the conductivity, their modification with different materials, conductive polymers and biomolecules in order to obtain functional flexible electrodes, allows the development of innovative devices for healthcare, and biomedical applications. In this review, the impact of metallized electrospun polymeric fibers in electrochemical (bio)sensors and actuators is discussed. A relation between their structure and functionality is provided, alongside with an overview of the different methods to obtain functional conductive fibers.  相似文献   
27.
A holographic spectacle-type wearable display (SWD) is proposed. In the proposal, partial coherent illumination and large-off axis hologram are applied to the optical layout in order to enhance resolution and simplify the optical system. The SWD bench model consists of six optical components, that is, LED light source, graded index (GI) lens, pinhole, hologram, substrate (spectacle glass), and test target. Here, the thickness of the spectacle glass fabricated is about 5 mm. The resolution of its reconstruction image on the bench model is measured by using a CCD camera. The MTF measured on SWD bench model is not less than 0.5 in spatial frequency 40 lp/mm, experimentally. Its value is enough resolution to display SXGA level. It is expected that the proposed optical system is useful as a wearable computer display unit.  相似文献   
28.
The rapid development of flexible electronics and the corresponding fabrication technologies have increased the use of portable and wearable self-powered devices. In this work, a shape-adaptive flexible triboelectric nanogenerator (TENG) based on a conductive ink material is demonstrated. The conductive ink-based bottom electrode with wrinkled structure ensures that the TENG exhibits outstanding stretchability and output performance such that it can adapt to complex and varying environmental factors. An output voltage of 128 V and power density of 0.286 mW/cm2 were generated under contact mode with applied vertical compressive stress of 20 N. Furthermore, because of the intrinsic mechanical ductility of the wrinkled structure, the proposed TENG can maintain excellent output performance when deformed under a certain range of strains, and active motion monitoring and energy harvesting functions can also be stably achieved on the irregular surface. The device was combined with a wireless transmission system to form a wearable mechanical signal detection patch for real-time monitoring of human joint activity, which provides a new treatment option in the field of sports rehabilitation. These advantages demonstrate that the proposed cost-effective and portable TENG is a promising candidate for the development of a self-powered strain sensing device in future practical applications.  相似文献   
29.
The high sensitivity flexible capacitive pressure sensor (FCPS) manufactured in a fast and efficient way has friendly man-machine interaction function. In this paper, a high-sensitivity FCPS is developed by using a two-step template method to reproduce biomimetic microtower polydimethylsiloxane (PDMS) from the lotus leaf surface. The capacitive sensor is composed of a PDMS dielectric layer and the Cu nanowire electrodes sandwiching in the middle, with a high sensitivity of ~1.207 kPa−1, a low detection limit of less than 0.02 kPa and a fast response time of 61.6 ms. Particularly, the sensing performance can be kept basically unchanged when bent at a 5 mm radius. Moreover, the FCPS can withstand 4000 repeated tests and maintain stable performance, and the sensitivity is almost the same in the process of loading and unloading, suggesting the high robustness. These results demonstrates the FCPSs have potential applications in electronic wearables, human health monitoring and uneven surface applications.  相似文献   
30.
X-rays are widely used in many fields, including medical imaging, chemical structure analysis, and nondestructive examinations. However, long-term X-ray exposure is harmful to human health. Hence, radiation protection materials, especially wearable materials with outstanding performances, are in need of development. Lead (Pb) plates are commonly used as traditional radiation protection materials but have the disadvantages of heavy mass, toxicity, and poor wearability. Cement and alloy also are used to shield the X-ray, whereas application is limited by its heavy mass. In recent years, the wearable polymer based radiation protection was developed but has the defect which is low interfacial compatibility, resulting in poor shielding properties of the material. The K or L absorption edge of an element plays a major role in the attenuation of X-ray photon energy, and has a significant attenuation effect on X-ray photons with similar energy. As an alternative, it has been reported that the K absorption edge of rare earth (RE) elements is located in the range of 40–80 keV, which corresponds to the energy range of X-rays and medical X-ray energy range. Additionally, natural leather (NL) is an abundant natural biomass that is composed of multi-layered collagen fibers and contains amino (―NH2), carboxyl (―COOH), and hydroxyl (―OH) groups. We believe that RE nanoparticles can be uniformly immobilized and stabilized by NL. In this study, we developed a novel strategy to prepare X-ray radiation protective materials by combining RE nanoparticles with NL. NL-based protective materials have the advantages of being lightweight and wearable while providing excellent protection. NL-based RE oxide nanoparticle composites (RE-NL) were successfully prepared by a "retanning" method and verified by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). X-ray protection tests showed that La-NL had the best shielding performance compared to the other tested RE oxide-loaded NLs owing to the small difference between the K-edge energy of La and the incident energy. Moreover, La7.80-NL (La2O3 content of 7.80 mmol·cm-3, 0.7 mm) showed better protection performance than a Pb plate with a high-Z elemental content (54.7 mmol·cm-3, 0.25 mm) at 40–80 keV, confirming that the uniform distribution of RE oxides in NL provides enhanced X-ray shielding performance. The RE-NL also displayed a much better tensile strength, tear strength, and softness compared with polymer-based RE oxide composites. Meanwhile, it has the foldability and character of tailor. Therefore, the reported NL-based RE protective materials show promising potential for various scenarios requiring radiation protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号