首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16470篇
  免费   1995篇
  国内免费   1544篇
化学   12530篇
晶体学   491篇
力学   1501篇
综合类   47篇
数学   384篇
物理学   5056篇
  2024年   55篇
  2023年   347篇
  2022年   539篇
  2021年   566篇
  2020年   870篇
  2019年   592篇
  2018年   517篇
  2017年   558篇
  2016年   818篇
  2015年   843篇
  2014年   925篇
  2013年   1205篇
  2012年   860篇
  2011年   1096篇
  2010年   961篇
  2009年   1043篇
  2008年   1053篇
  2007年   1130篇
  2006年   973篇
  2005年   810篇
  2004年   765篇
  2003年   679篇
  2002年   463篇
  2001年   385篇
  2000年   323篇
  1999年   235篇
  1998年   243篇
  1997年   200篇
  1996年   179篇
  1995年   104篇
  1994年   102篇
  1993年   79篇
  1992年   74篇
  1991年   60篇
  1990年   57篇
  1989年   50篇
  1988年   28篇
  1987年   33篇
  1986年   31篇
  1985年   27篇
  1984年   25篇
  1983年   22篇
  1982年   27篇
  1981年   12篇
  1980年   5篇
  1979年   9篇
  1978年   5篇
  1977年   5篇
  1973年   4篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The synthesis of hierarchical nanosized zeolite materials without growth modifiers and mesoporogens remains a substantial challenge. Herein, we report a general synthetic approach to produce hierarchical nanosized single‐crystal aluminophosphate molecular sieves by preparing highly homogeneous and concentrated precursors and heating at elevated temperatures. Accordingly, aluminophosphate zeotypes of LTA (8‐rings), AEL (10‐rings), AFI (12‐rings), and ‐CLO (20‐rings) topologies, ranging from small to extra‐large pores, were synthesized. These materials show exceptional properties, including small crystallites (30–150 nm), good monodispersity, abundant mesopores, and excellent thermal stability. A time‐dependent study revealed a non‐classical crystallization pathway by particle attachment. This work opens a new avenue for the development of hierarchical nanosized zeolite materials and understanding their crystallization mechanism.  相似文献   
992.
The combination of supramolecular chemistry and soft colloids as microgels represents an ambitious way to develop multi‐versatile colloidal assemblies. Hereafter, terpyridine‐functionalized poly(N‐isopropylacrylamide) (PNiPAM) microgel building blocks are shown to undergo an assemble–freeze–disassemble process. The microgel assemblies, which are controlled by monitoring the attractive and repulsive potentials between the soft colloidal particles, are then frozen by forming inter‐particle metal–terpyridine bis‐complexes upon addition of the metallic cation (such as FeII, CoII). By oxidation of the metal–terpyridine bis‐complex links, the aggregates open up, which is due to the complex dissociation releasing the connected particles in the form of single microgels. We extended our work to the development of 1D filaments and 2D membranes materials made of soft particles connected via supramolecular chemistry.  相似文献   
993.
Constructing heterojunctions between two semiconductors with matched band structure is an effective strategy to acquire high‐efficiency photocatalysts. The S‐scheme heterojunction system has shown great potential in facilitating separation and transfer of photogenerated carriers, as well as acquiring strong photoredox ability. Herein, a 0D/2D S‐Scheme heterojunction material involving CeO2 quantum dots and polymeric carbon nitride (CeO2/PCN) is designed and constructed by in situ wet chemistry with subsequent heat treatment. This S‐scheme heterojunction material shows high‐efficiency photocatalytic sterilization rate (88.1 %) towards Staphylococcus aureus (S. aureus) under visible‐light irradiation (λ≥420 nm), which is 2.7 and 8.2 times that of pure CeO2 (32.2 %) and PCN (10.7 %), respectively. Strong evidence of S‐scheme charge transfer path is verified by theoretical calculations, in situ irradiated X‐ray photoelectron spectroscopy, and electron paramagnetic resonance.  相似文献   
994.
Fast, mass, and low‐cost production of high‐quality graphene, which is alluring, remains a great challenge, even though some approaches have shown potential for mass synthesis of graphene. Very recently a great breakthrough was made by Tour and co‐workers (Nature 2020, 577, 647–651): in just a second, easily exfoliated and highly crystalline graphene was produced from abundant carbon‐containing species by cost‐effective flash Joule heating with a low energy input of 7.2 kJ per gram graphene. Such an ultrafast, economic, and scalable process for high‐quality graphene production can be considered as a milestone in the graphene field and is highlighted in this article.  相似文献   
995.
To design high‐performance mid‐infrared (mid‐IR) nonlinear optical (NLO) materials, we have focused on the combination of a heavy metal lone pair cation, Pb2+ and mixed oxyhalides. A systematic investigation in PbO‐PbCl2‐PbBr2 system led us to discover the first examples of NLO lead mixed oxyhalides, namely, Pb13O6Cl4Br10, Pb13O6Cl7Br7, and Pb13O6Cl9Br5. All the reported materials have remarkably comprehensive properties including broad IR transparency (up to 14.0 μm), qualified second harmonic generation (SHG) responses (0.6–0.9×AgGaS2), wide band gaps (3.05–3.21 eV), and ease of crystal growth. Interestingly, a centimeter‐sized single crystal (2.9×1.3×0.5 cm3) of Pb13O6Cl9Br5 revealing a wide transparent range (0.384–14.0 μm) and high laser damage threshold (LDT) (14.6×AgGaS2) has been successfully grown in an open system. The study suggests that all the reported mixed oxyhalides are outstanding candidates for mid‐IR NLO materials.  相似文献   
996.
997.
998.
The outstanding adhesive performance of mussel byssal threads has inspired materials scientists over the past few decades. Exploiting the amino‐catechol synergy, polymeric pressure‐sensitive adhesives (PSAs) have now been synthesized by copolymerizing traditional PSA monomers, butyl acrylate and acrylic acid, with mussel‐inspired lysine‐ and aromatic‐rich monomers. The consequences of decoupling amino and catechol moieties from each other were compared (that is, incorporated as separate monomers) against a monomer architecture in which the catechol and amine were coupled together in a fixed orientation in the monomer side chain. Adhesion assays were used to probe performance at the molecular, microscopic, and macroscopic levels by a combination of AFM‐assisted force spectroscopy, peel and static shear adhesion. Coupling of catechols and amines in the same monomer side chain produced optimal cooperative effects in improving the macroscopic adhesion performance.  相似文献   
999.
We outline a methodology for efficiently computing the electromagnetic response of molecular ensembles. The methodology is based on the link that we establish between quantum-chemical simulations and the transfer matrix (T-matrix) approach, a common tool in physics and engineering. We exemplify and analyze the accuracy of the methodology by using the time-dependent Hartree-Fock theory simulation data of a single chiral molecule to compute the T-matrix of a cross-like arrangement of four copies of the molecule, and then computing the circular dichroism of the cross. The results are in very good agreement with full quantum-mechanical calculations on the cross. Importantly, the choice of computing circular dichroism is arbitrary: Any kind of electromagnetic response of an object can be computed from its T-matrix. We also show, by means of another example, how the methodology can be used to predict experimental measurements on a molecular material of macroscopic dimensions. This is possible because, once the T-matrices of the individual components of an ensemble are known, the electromagnetic response of the ensemble can be efficiently computed. This holds for arbitrary arrangements of a large number of molecules, as well as for periodic or aperiodic molecular arrays. We identify areas of research for further improving the accuracy of the method, as well as new fundamental and technological research avenues based on the use of the T-matrices of molecules and molecular ensembles for quantifying their degrees of symmetry breaking. We provide T-matrix-based formulas for computing traditional chiro-optical properties like (oriented) circular dichroism, and also for quantifying electromagnetic duality and electromagnetic chirality. The formulas are valid for light-matter interactions of arbitrarily-high multipolar orders.  相似文献   
1000.
Organic–inorganic halide perovskite solar cells (PSCs) have attracted much attention due to their rapid increase in power conversion efficiencies (PCEs), and many efforts are devoted to further improving the PCEs. Designing highly efficient hole transport materials (HTMs) for PSCs may be one of the effective ways. Herein we theoretically designed three new HTMs (FDT−N, FDT−O, and FDT−S) by introducing a nitrogen-phenyl group, an oxygen atom, and a sulfur atom into the spiro core of an experimentally synthesized HTM (FDT), respectively. And then we performed quantum chemical calculation to study their application potential. The results show that the devices with FDT−O and FDT−S instead of FDT may have higher open circuit voltages owing to their lower highest occupied molecular orbital (HOMO) energy levels. Moreover, FDT−S exhibits the best hole transport performance among the studied HTMs, which may be due to the significant HOMO-HOMO overlap in the hole hopping path with the largest transfer integral. Furthermore, the results on interface properties indicate that introducing oxygen and sulfur atoms can enhance the MAPbI3/HTM interface interaction. The present work not only offers two promising HTMs (FDT−O and FDT−S) for PSCs but also provides theoretical help for subsequent research on HTMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号