首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   0篇
化学   115篇
  2021年   1篇
  2020年   9篇
  2019年   27篇
  2018年   8篇
  2017年   18篇
  2016年   8篇
  2015年   8篇
  2014年   1篇
  2013年   4篇
  2012年   13篇
  2011年   8篇
  2010年   7篇
  2009年   2篇
  2007年   1篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
91.
As the performance of photoanodes for solar water splitting steadily improves, the extension of the absorption wavelength in the photoanodes is highly necessary to substantially improve the water splitting. We use a luminescent back reflector (LBR) capable of photon upconversion (UC) to improve the light harvesting capabilities of Mo:BiVO4 photoelectrodes. The LBR is prepared by dispersing the organic dye pair meso‐tetraphenyltetrabenzoporphine palladium and perylene capable of triplet–triplet annhilation‐based UC in a polymer film. The LBR converts the wavelengths of 600–650 nm corresponding to the sub‐band gap of Mo:BiVO4 and the wavelengths of 350–450 nm that are not sufficiently absorbed in Mo:BiVO4 to a wavelength that can be absorbed by a Mo:BiVO4 photoelectrode. The LBR improves the water splitting reaction of Mo:BiVO4 photoelectrodes by 17 %, and consequently, the Mo:BiVO4/LBR exhibits a photocurrent density of 5.25 mA cm?2 at 1.23 V versus the reversible hydrogen electrode. The Mo:BiVO4/LBR exhibits hydrogen/oxygen evolution corresponding to the increased photocurrent density and long‐term operational stability for the water splitting reaction.  相似文献   
92.
The natural Mn4Ca cluster in photosystem II serves as a blueprint to develop artificial water‐splitting catalysts for the generation of solar fuel in artificial photosynthesis. Although significant advances have recently been achieved, it remains a great challenge to prepare robust artificial Mn4Ca clusters that precisely mimic the structure and function of the biological catalyst. Herein, we report the isolation and structural characterization of two Mn4CaO4 complexes with polar solvent molecules, acetonitrile or N,N‐dimethylformamide, which closely mimics the two water molecules on the calcium ion, as well as the oxidation states of the four manganese ions and the main geometric structure of the natural Mn4Ca cluster. These new artificial Mn4Ca complexes provide important chemical clues to understand the structure and mechanism of the biological system.  相似文献   
93.
Solar light harvesting by photocatalytic H2 evolution from water could solve the problem of greenhouse gas emission from fossil fuels with alternative clean energy. However, the development of more efficient and robust catalytic systems remains a great challenge for the technological use on a large scale. Here we report the synthesis of a sol–gel prepared mesoporous graphitic carbon nitride (sg‐CN) combined with nickel phosphide (Ni2P) which acts as a superior co‐catalyst for efficient photocatalytic H2 evolution by visible light. This integrated system shows a much higher catalytic activity than the physical mixture of Ni2P and sg‐CN or metallic nickel on sg‐CN under similar conditions. Time‐resolved photoluminescence and electron paramagnetic resonance (EPR) spectroscopic studies revealed that the enhanced carrier transfer at the Ni2P–sg‐CN heterojunction is the prime source for improved activity.  相似文献   
94.
The BiVO4 photoelectrochemical (PEC) electrode in tandem with a photovoltaic (PV) cell has shown great potential to become a compact and cost‐efficient device for solar hydrogen generation. However, the PEC part is still facing problems such as the poor charge transport efficiency owing to the drag of oxygen vacancy bound polarons. In the present work, to effectively suppress oxygen vacancy formation, a new route has been developed to synthesize BiVO4 photoanodes by using a highly oxidative two‐dimensional (2D) precursor, bismuth oxyiodate (BiOIO3), as an internal oxidant. With the reduced defects, namely the oxygen vacancies, the bound polarons were released, enabling a fast charge transport inside BiVO4 and doubling the performance in tandem devices based on the oxygen vacancy eliminated BiVO4. This work is a new avenue for elaborately designing the precursor and breaking the limitation of charge transport for highly efficient PEC‐PV solar fuel devices.  相似文献   
95.
Constructing hollow multi‐shelled structures (HoMSs) has a significant effect on promoting light absorption property of catalysts and enhancing their performance in solar energy conversion applications. A facile hydrothermal method is used to design the SrTiO3?TiO2 heterogeneous HoMSs by hydrothermal crystallization of SrTiO3 on the surface of the TiO2 HoMSs, which will realize a full coverage of SrTiO3 on the TiO2 surface and construct the SrTiO3/TiO2 junctions. The broccoli‐like SrTiO3?TiO2 heterogeneous HoMSs exhibited a fourfold higher overall water splitting performance of 10.6 μmol h?1 for H2 production and 5.1 μmol h?1 for O2 evolution than that of SrTiO3 nanoparticles and the apparent quantum efficiency (AQE) of 8.6 % at 365 nm, which can be mainly attributed to 1) HoMS increased the light absorption ability of the constructed photocatalysts and 2) the SrTiO3?TiO2 junctions boosted the separation efficiency of the photogenerated charge carriers.  相似文献   
96.
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号