首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1845篇
  免费   336篇
  国内免费   332篇
化学   2390篇
晶体学   16篇
力学   3篇
综合类   13篇
数学   3篇
物理学   88篇
  2023年   25篇
  2022年   30篇
  2021年   62篇
  2020年   92篇
  2019年   59篇
  2018年   46篇
  2017年   41篇
  2016年   113篇
  2015年   112篇
  2014年   121篇
  2013年   177篇
  2012年   147篇
  2011年   134篇
  2010年   109篇
  2009年   108篇
  2008年   136篇
  2007年   127篇
  2006年   147篇
  2005年   113篇
  2004年   103篇
  2003年   95篇
  2002年   55篇
  2001年   45篇
  2000年   29篇
  1999年   32篇
  1998年   34篇
  1997年   40篇
  1996年   36篇
  1995年   31篇
  1994年   23篇
  1993年   22篇
  1992年   15篇
  1991年   6篇
  1990年   14篇
  1989年   10篇
  1988年   10篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2513条查询结果,搜索用时 31 毫秒
101.
《Electroanalysis》2017,29(2):466-471
A novel, stable, solid‐state and stereoselective electrochemiluminescence (ECL) sensor has been designed to enantioselectively discriminate ascorbic acid (AA) and isoascorbic acid (IAA) by immobilizing Ru(bpy)32+ (Ru), thiolated β‐cyclodextrin (β‐CD‐SH) and gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables (GP‐CSCN) on glassy carbon electrode. All chemical compounds could be immobilized on the surface of electrode stably through nafion film, and high stereoselectivity could be introduced to the sensor via the synergistic effects of the β‐CD‐SH and GP‐CSCN nanomaterials. When the developed sensor interacted with AA and IAA, obvious difference of ECL intensities was observed, and a larger intensity was obtained from AA, which indicated that this strategy could be employed to enantioselectively recognize AA and IAA. As a result, ECL technique might act as a promising method for recognition of chiral compounds.  相似文献   
102.
《Electroanalysis》2017,29(6):1524-1531
Simultaneous sensing of dopamine (DA), acetaminophen (AP) and melatonin (MEL) was made by electrochemical method as the drugs melatonin and acetaminophen interact with dopamine in brain to induce neuro disorders. The glassy carbon electrode surface was modified with un‐doped α‐ Fe2O3, platinum doped Fe2O3 (dPtFe2O3), Pt decorated Fe2O3 (sPtFe2O3) and doped and decorated Fe2O3 (sdPtFe2O3) nano particles that are synthesized by co‐precipitation method in presence of polyethylene glycol for the first time. These particles were characterized using Ultra‐Violet Visible (UV‐Vis), scanning electron microscopy (SEM), X‐ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and electrochemical techniques. The sdPtFe2O3 showed the highest catalytic activity than the dPtFe2O3, sPtFe2O3 and un‐doped α‐ Fe2O3 with well separated voltammetric peaks for DA and AP in presence of MEL. This is attributed to higher surface hydration effects of the sdPtFe2O3, dPtFe2O3 and sPtFe2O3 than the un‐doped Fe2O3 which plays a vital role in enhancing the melatonin sensing in presence of dopamine and acetaminophen. Linear ranges and lowest detection limits for all three analytes were increased by 10 times for the sdPtFe2O3 compared to other Fe2O3 modified electrodes. The sensor is validated using commercially available pharmaceutical drugs used in therapeutics.  相似文献   
103.
104.
The vapochromic single-crystal-to-single-crystal (SCSC) transformation of a highly luminescent PtII complex bearing an N-heterocyclic carbene [Pt(CN)2(tBu-impy)] (tBu-impyH+=1-tert-butyl-3-(2-pyridyl)-1H-imidazolium) is reported. The trihydrate form of the complex, which exhibits blue 3MMLCT emission owing to weak Pt⋅⋅⋅Pt interactions, changed its luminescence color from blue to yellowish-green upon the desorption of water molecules while keeping the high emission quantum yield of more than 0.45. Variable-temperature and continuous in-situ tracking of single-crystal X-ray diffraction measurements revealed that the SCSC transformation proceeds reversibly by the release and reabsorption of water molecules, thereby changing the stacked structure slightly. As a result, the dynamics of vapor-induced SCSC transformation were elucidated: that the anhydrous form returned to the original trihydrate form in a two-step process under a water vapor atmosphere. In addition, the PtII complex exhibited a similar SCSC response accompanied by a luminescence color change in the presence of methanol vapor, while being inactive toward ethanol vapor.  相似文献   
105.
Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H2PtCl6 and I during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology. Au/Pt nanobowls, which couple plasmonic Au and catalytic Pt, were then constructed as plasmonic electrocatalysts for methanol oxidation. The mass activity reached 497.6 mA mg−1 under visible-light illumination, which is 1.9 times that measured in the dark. Simultaneously, the electrocatalytic stability is also greatly improved under light excitation. The enhanced properties of the plasmonic Au/Pt electrocatalysts are ascribed to the synergistic effect of the plasmon-enhanced photothermal and hot-carrier effects on the basis of experimental investigations. This work thus offers an effective methodology to construct efficient plasmonic electrocatalysts for fuel cells.  相似文献   
106.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   
107.
The sensitive and selective detection of dopamine (DA) is very important for the early diagnosis of DA-related diseases. In this study, we reported the colorimetric detection of DA using Ganoderma lucidum polysaccharide (GLP) stabilized platinum nanoclusters (Ptn-GLP NCs). When Pt600-GLP NCs was added, 3,3’,5,5’-tetramethylbenzidine (TMB) was rapidly catalyzed and oxidized to blue oxTMB, indicating the peroxidase-like activity of Pt600-GLP NCs. The catalytic reaction on the substrate TMB followed the Michaelis-Menton kinetics with the ping-pong mechanism. The mechanism of the colorimetric reaction was mainly due to the formation of hydroxyl radical (•OH). Furthermore, the catalytic reaction of Pt600-GLP NCs was used in the colorimetric detection of DA. The linear range for DA was 1–100 μM and the detection limit was 0.66 μM. The sensitive detection of DA using Pt-GLP NCs with peroxidase-like activity offers a simple and practical method that may have great potential applications in the biotechnology field.  相似文献   
108.
Zeise's salt, [PtCl3(H2C=CH2)], is the oldest known organometallic complex, featuring ethylene strongly bound to a platinum salt. Many derivatives are known, but none involving dinitrogen, and indeed dinitrogen complexes are unknown for both platinum and palladium. Electrospray ionization mass spectrometry of K2[PtCl4] solutions generate strong ions corresponding to [PtCl3(N2)], the identity of which was confirmed through ion-mobility spectrometry and MS/MS experiments that proved it to be distinct from its isobaric counterparts [PtCl3(C2H4)] and [PtCl3(CO)]. Computational analysis established a gas-phase platinum–dinitrogen bond strength of 116 kJ mol−1, substantially weaker than the ethylene and carbon monoxide analogues but stronger than for polar solvents such as water, methanol and dimethylformamide, and strong enough that the calculated N−N bond length of 1.119 Å represents weakening to a degree typical of isolated dinitrogen complexes.  相似文献   
109.
Platinum-based chemotherapy persists to be the only effective therapeutic option against a wide variety of tumours. Nevertheless, the acquisition of platinum resistance is utterly common, ultimately cornering conventional platinum drugs to only palliative in many patients. Thus, encountering alternatives that are both effective and non-cross-resistant is urgent. In this work, we report the synthesis, reduction studies, and luminescent properties of a series of cyclometallated (C,N,N′)PtIV compounds derived from amine–imine ligands, and their remarkable efficacy at the high nanomolar range and complete lack of cross-resistance, as an intrinsic property of the platinacycle, against multiplatinum-resistant colorectal cancer (CRC) and castration-resistant prostate cancer (CRPC) metastatic cell lines generated for this work. We have also determined that the compounds are effective and selective for a broader cancer panel, including breast and lung cancer. Additionally, selected compounds have been further evaluated, finding a shift in their antiproliferative mechanism towards more cytotoxic and less cytostatic than cisplatin against cancer cells, being also able to oxidize cysteine residues and inhibit topoisomerase II, thereby holding great promise as future improved alternatives to conventional platinum drugs.  相似文献   
110.
The two independent and coordination sites of a newly synthesized bis[2-(hydroxyphenyl)-1,2,4-triazole] platform have been exploited to prepare four monometallic neutral ()PtII complexes carrying DMSO, pyridine, triphenylphosphine, or N-heterocyclic carbene as the fourth ligand. Then, the second coordination site was used to introduce an IR-active rhenium tricarbonyl entity, affording the four corresponding heterobimetallic neutral PtII/ReI complexes, as well as a cationic PtII/ReI derivative. X-ray crystallographic studies showed that distortion of the organic platform occurred to accommodate the coordination geometry of both metal centers. No ligand exchange or transchelation occurred upon incubation of the PtII complexes in aqueous environment or in the presence of FeIII, respectively. The antiproliferative activity of the ligand and complexes was first screened on the triple-negative breast cancer cell line MDA-MB-231. Then, the IC50 values of the most active candidates were determined on a wider panel of human cancer cells (MDA-MB-231, MCF-7, and A2780), as well as on a nontumorigenic cell line (MCF-10A). Low micromolar activities were reached for the complexes carrying a DMSO ligand, making them the first examples of highly active, but hydrolytically stable, PtII complexes. Finally, the characteristic mid-IR signature of the {Re(CO)3} fragment in the Pt/Re heterobimetallic complexes was used to quantify their uptake in breast cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号