首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   45篇
  国内免费   18篇
化学   535篇
晶体学   1篇
力学   26篇
物理学   141篇
  2024年   3篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   9篇
  2017年   26篇
  2016年   25篇
  2015年   26篇
  2014年   17篇
  2013年   49篇
  2012年   17篇
  2011年   32篇
  2010年   32篇
  2009年   21篇
  2008年   36篇
  2007年   38篇
  2006年   52篇
  2005年   33篇
  2004年   42篇
  2003年   27篇
  2002年   41篇
  2001年   22篇
  2000年   24篇
  1999年   20篇
  1998年   13篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   21篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1957年   1篇
排序方式: 共有703条查询结果,搜索用时 15 毫秒
21.
We investigate the cyclic mechanical behavior in uniaxial tension of three different commercial thermoplastic polyurethane elastomers (TPU) often considered as a sustainable replacement for common filled elastomers. All TPU have similar hard segment contents and linear moduli but sensibly different large strain properties as shown by X-ray analysis. Despite these differences, we found a stiffening effect after conditioning in step cyclic loading which greatly differs from the common softening (also referred as Mullins effect) observed in chemically crosslinked filled rubbers. We propose that this self-reinforcement is related to the fragmentation of hard domains, naturally present in TPU, in smaller but more numerous sub-units that may act as new physical crosslinking points. The proposed stiffening mechanism is not dissimilar to the strain-induced crystallization observed in stretched natural rubber, but it presents a persistent nature. In particular, it may cause a local reinforcement where an inhomogeneous strain field is present, as is the case of a crack propagating in cyclic fatigue, providing a potential explanation for the well-known toughness and wear resistance of TPU.  相似文献   
22.
Wrinkles with two distinct wavelengths formed sequentially on the same surface are investigated. A series of aligned wrinkles are formed through local strain application on a partially crosslinked elastomer. After the formation of these primary wrinkles, the elastomer is fully crosslinked, and a mechanical compressive strain is applied to the sample orthogonal to the primary wrinkles. This mechanical strain results in smaller secondary wrinkles superimposed on the larger primary aligned wrinkles. Resulting biaxial morphologies suggest that the primary pattern directs the formation of the smaller wrinkles. The modulus mismatch of the substrate on primary and secondary wrinkle formation dictates the ratio between the two resulting wavelengths, as well as the specific biaxial morphologies, ranging from zigzag ridges to ellipsoidal bumps or corn‐on‐the‐cob structures to the classic herringbone. The sequential strain wrinkling process has the potential to be used on an industrial scale for the facile formation of surface topography with two discrete, tunable lateral dimensions over large surface areas. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
23.
We present the development and applications of dielectric elastomers. For the last 10 years the significance of this class of polymers has risen as more applications seem possible and first products have been commercialized.  相似文献   
24.
A series of poly(L-lactic acid)/polybutadiene (PLA/PB) biodegradable multiblock elastomers was synthesized and characterized. A two-step process to prepare PLA/PB multiblock elastomers was applied. Melt polymerization was used to prepare poly(L-lactic acid) (PLA) terminated with hydroxyl groups and, at the same time, hydroxyl-terminated polybutadiene (HTPB) and 1,6-hexamethylene diisocyanate (HDI) were employed to synthesize diisocyanate-terminated polybutadiene (ITPB). Then, PLA and ITPB were reacted with different PLA/PB weight ratios. Consequently, a series of PLA/PB biodegradable poly(ester-urethane)s with crosslinked chains was obtained. Swelling characteristics and crosslink density of the crosslinked elastomer were investigated. DMA was applied to characterize its thermal properties. The measurement of mechanical properties showed that a PLA/PB elastomer with adjustable mechanical properties was synthesized. Micromorphology, hydrophobicity, and degradability of the material were also characterized.  相似文献   
25.
Arylsilicones are widely exploited for their thermal and optical properties. The creation of phenylsilicone elastomers with specific physical properties is typically done by a “one-off” formulation and test process. Herein, it is demonstrated that high-throughput synthesis methods can be used to rapidly prepare a series of arylsilicone elastomers and then the relative impact of different aryl groups on their physical properties is assessed. Aromatic groups were incorporated into polydimethylsiloxane (PDMS) elastomers by exploiting the relative reactivity of different functional groups in the Piers–Rubinsztajn reaction. To analyze trends in the silicone mechanical properties as a function of increasing aryl concentration—structure/property relationships—libraries of elastomers were both quickly synthesized and characterized by using high-throughput suites starting from low viscosity silicone oils/monomers in 96-well plates. Liquid handling parameters were optimized to effectively work with the silicones. Incorporating aryl instead of alkyl crosslinkers into the PDMS backbone increased the silicone elastomer modulus by approximately 50 % (at a crosslink density of 6 %); elastomers prepared with an aromatic crosslinker with three contact points led to much higher moduli compared with those with one contact point at the same crosslink density. When located at precise rather than random points on the silicone chains, diphenylsilicones had lower moduli than analogous monophenylsilicones.  相似文献   
26.
Farnesene (Far) is a bio‐based terpene monomer that is similar in structure to commercially used dienes like butadiene and isoprene. Nitroxide‐mediated polymerization (NMP) is adept for the polymerization of dienes, but not particularly effective at controlling the polymerization of methacrylates using commercial nitroxides. In this study, Far is statistically copolymerized with a functional methacrylate, glycidyl methacrylate (GMA), by NMP using N‐succinimidyl modified commercial BlocBuilder (NHS‐BB) initiator. Reactivity ratios are determined to be r Far = 0.54 ± 0.04 and r GMA = 0.24 ± 0.02. The ability of the poly(Far‐stat‐GMA) chains to reinitiate for chain extension with styrene showed a clear shift in molecular weight and monomodal distribution. Copolymerizations using a new alkoxyamine, Dispolreg 007 (D7), is explored as it is shown to homopolymerize methacrylates, but not yet reported for statistical copolymerizations. Bimodal molecular weight distributions are observed when an equimolar ratio of Far and GMA is copolymerized with D7 due to slow decomposition of the initiator, but chain ends are active as shown by successful chain extension with styrene. Both NHS‐BB and D7 initiators are used to synthesize poly[Far‐b‐(GMA‐stat‐Far)] and poly(Far‐b‐GMA) diblock copolymers. While the NHS‐BB initiated polymer chains have lower dispersity, D7 exhibits more linear polymerization kinetics and maintains more active chain ends.  相似文献   
27.
Composites based on biocompatible thermoplastic elastomer styrene‐ethylene/butylene‐styrene (SEBS) as matrix and multi‐walled carbon nanotubes (MWCNT) as nanofillers show excellent mechanical and piezoresistive properties from low to large deformations. The MWCNT/SEBS composites have been prepared following a green solvent approach, to extend their range of applicability to biomedical applications. The obtained composites with 2, 4, and 5 wt % MWCNT content provide suitable piezoresistive response up to 80% deformation with a piezoresistive sensibility near 2.7, depending on the applied strain and MWCNT content. Composite sensors were also developed by spray and screen printing and integrated with an electronic data acquisition system with RF communication. The possibility to accurately control the composites properties and performance by varying MWCNT content, viscosity, and mechanical properties of the polymer matrix, shows the large potential of the system for the development of large deformation printable piezoresistive sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2092–2103  相似文献   
28.
29.

End‐linking poly(dimethylsiloxane) was used to prepare bimodal elastomers networks so as to have inhomogeneous nanostructures, and also to prepare others having very broadly multimodal chain‐length distributions. Macroscopic phase separation, probably high crosslink density clusters, was observed to occur in some of the bimodal networks. The mechanical properties in simple extension and in equilibrium swelling were measured. The bimodal elastomers that were not obviously inhomogeneous showed very good mechanical properties, but the macroscopically phase‐separated networks, and the broadly multimodal network were weak. Analysis of the Mooney‐Rivlin profiles suggests that the reinforcing mechanism could have a structural component in addition to that from the limited extensibilities of the short chains. The mechanical properties and the extents of swelling support the cluster conjecture, in accord with previous morphological studies on spatially‐inhomogeneous polysiloxane elastomers.  相似文献   
30.
A series of new poly(ether-ester-imide)s, PEEIs, was prepared from an imide dicarboxylic acid based on 1,4-diaminobutane and trimellitic anhydride. This imide dicarboxylic acid polycondensed with 1,4-dihydroxybutane formed the hard segments and poly(ethylene oxide), PEO-1000, or mixtures of PEO-1000 and poly(tetramethylene oxide), PTMO-1000, were used as soft segments. Whenever PTMO-1000 was used as comonomer, macrophase separation was observed at the end of the polycondensation. However, this macrophase separation had little influence on the mechanical properties. A poly(ether-esterimide), PEEI, containing neat PEO-1000 was characterized by dynamic mechanical thermoanalysis, stress-strain and hysteresis measurements, and by melt rheology. The mechanical properties were compared with those of an analogous PEEI containing neat PTMO-1000 and with those of a poly(ether-ester), PEE, based on poly(butylene terephthalate) hard segments and PTMO-1000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号