首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11865篇
  免费   1022篇
  国内免费   431篇
化学   12593篇
晶体学   44篇
力学   127篇
综合类   8篇
数学   20篇
物理学   526篇
  2024年   32篇
  2023年   70篇
  2022年   165篇
  2021年   192篇
  2020年   398篇
  2019年   339篇
  2018年   296篇
  2017年   473篇
  2016年   684篇
  2015年   571篇
  2014年   599篇
  2013年   978篇
  2012年   770篇
  2011年   736篇
  2010年   693篇
  2009年   767篇
  2008年   755篇
  2007年   747篇
  2006年   646篇
  2005年   583篇
  2004年   615篇
  2003年   448篇
  2002年   329篇
  2001年   185篇
  2000年   118篇
  1999年   140篇
  1998年   124篇
  1997年   132篇
  1996年   114篇
  1995年   99篇
  1994年   104篇
  1993年   105篇
  1992年   108篇
  1991年   46篇
  1990年   24篇
  1989年   23篇
  1988年   21篇
  1987年   15篇
  1986年   16篇
  1985年   10篇
  1984年   12篇
  1983年   5篇
  1982年   11篇
  1981年   7篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
991.
The pH‐sensitive tertiary amino groups were introduced to synthesize temperature and pH dual‐sensitive degradable polyaspartamide derivatives (phe/DEAE‐g‐PHPA) containing pendant aromatic structures and ionizable tertiary amino groups. The thermo/pH‐responsive behavior of phe/DEAE‐g‐PHPA polymer can be tuned by adjusting the graft copolymer composition. Due to the pH sensitivity of the phe/DEAE‐g‐PHPA‐g‐mPEG polymer with hydrophilic long PEG chain, the micelles and the anticancer drug‐loaded micelles were prepared by a quick pH‐changing method without using toxic organic solvent. The obtained polymeric micelles, paclitaxel‐loaded micelles and doxorubicin‐loaded micelles were stable under physiological conditions. Both the drug‐loaded micelles showed much faster release at pH 5 than at pH 7.4. The doxorubicin‐loaded micelles showed obvious and better anticancer activity against both HepG2 and HeLa cells than free doxorubicin. Thus these nontoxic, dual thermo‐ and pH‐sensitive phe/DEAE‐g‐PHPA‐g‐mPEG micelles may be a promising anticancer drug delivery system. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 879–888  相似文献   
992.
The synthesis via copper(I)‐catalyzed azide alkyne cycloaddition (CuAAC) of three new monomer derivatives of N‐vinyl‐2‐pyrrolidone (VP) carrying cyclic pyrrolidine, piperidine, and piperazine groups and the corresponding copolymers with unmodified VP is shown. The systems bearing pyrrolidine and piperidine displayed both thermo‐ and pH‐response, which has not been reported previously for a polymer with polyvinylpyrrolidone (PVP) backbone. A broad modulation of the LCST with the copolymer composition and pH was observed in a temperature range 0–100 °C. The polymers carrying piperazine exhibited broad buffering regions and no thermosensitivity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1098–1108  相似文献   
993.
A novel nanocomposite of molecularly imprinted polymers and graphene sheets was fabricated and used to obtain a highly conductive acetylene black paste electrode with high conductivity for the detection of bisphenol A. The two‐dimensional structure and the chemical functionality of graphene provide an excellent surface for the enhancement of the sensitivity of the electrochemical sensor and the specificity of molecularly imprinted polymers to improve detection of bisphenol A. The synergistic effect between graphene and molecularly imprinted polymers confers the nanocomposite with superior conductivity, broadened effective surface area and outstanding electrochemical performance. Factors affecting the performance of the imprinted sensor such as molecularly imprinted polymers concentration, foster time and scan rate are discussed. The sensor successfully detects bisphenol A with a wide linear range of 3.21 × 10?10 to 2.8 × 10?1 g/L (R = 0.995) and a detection limit of 9.63 × 10?11g/L. The fabricated sensor also possessed high selectivity and stability and exhibits potential for environmental detection of contaminants and food safety inspection.  相似文献   
994.
Poly(ethylene glycol)‐poly(lactide) (PEG‐PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star‐shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  相似文献   

995.
In order to construct unique polypeptide architectures, a novel telechelic‐type initiator with two leucine ethyl ester units is designed for chemoenzymatic polymerization. Glycine or alanine ethyl ester is chemoenzymatically polymerized using papain in the presence of the initiator, and the propagation occurs at each leucine ethyl ester unit to produce the telechelic polypeptide. The formation of the telechelic polypeptides is confirmed by 1H NMR and MALDI‐TOF mass spectroscopies. It is revealed by AFM observation that long nanofibrils are formed from the telechelic polyalanine, whereas a conventional linear polyalanine with a similar degree of polymerization shows granule‐like structures. The telechelic polyglycine and polyalanine show the crystalline structures of Polyglycine II and antiparallel β‐sheet, respectively. It is demonstrated that this method to synthesize telechelic‐type polypeptides potentially opens up a pathway to construct novel hierarchical structures by self‐assembly.

  相似文献   

996.
Poly(2‐alkenyl‐2‐oxazoline)s are promising functional polymers for a variety of biomedical applications, such as drug delivery systems, peptide conjugates, or gene delivery. In this study, poly(2‐isopropenyl‐2‐oxazoline) (PIPOx) is prepared through free‐radical polymerization initiated with azobisisobutyronitrile. Reactive 2‐oxazoline units in the side chain support an addition reaction with different compounds containing a carboxylic group, which facilitates the preparation of polymers labeled with two different fluorescent dyes. The cytotoxicities of 2‐oxazoline monomers, PIPOx, and fluorescently labeled PIPOx are evaluated in vitro using an 3‐(4,5‐Dimethyldiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and ex vivo using a cell proliferation assay with adenosine triphosphate bioluminescence. The cell uptake of labeled PIPOx is used to determine the colocalization of PIPOx with cell organelles that are part of the endocytic pathway. For the first time, it is shown that poly(2‐isopropenyl‐2‐oxazoline) is a biocompatible material and is suitable for biomedical applications; further, its immunomodulative properties are evaluated.

  相似文献   

997.
There is an actual need of advanced materials for the emerging field of bioelectronics. One commonly used material is the conducting polymer poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) due to its general use in organic electronics. However, depending on the application in bioelectronics, PEDOT:PSS is not fully biocompatible due to the high acidity of the residual sulfonate protons of PSS. In this paper, the synthesis and biocompatibility properties of new poly(3,4‐ethylenedioxythiophene):GlycosAminoGlycan (PEDOT:GAG) aqueous dispersions and its resulting films are shown. Thus, negatively charged GAGs as an alternative to PSS are presented. Three different commercially available GAGs, hyaluronic acid, heparin, and chondroitin sulfate are used. Indeed, PEDOT:GAGs dispersions are prepared through an oxidative chemical polymerization in water. Biocompatibility assays of the PEDOT:GAGs coatings are performed using SH‐SY5Y and CCF‐STTG1 cell lines and with ATP and Ca2+. Results show full biocompatibility and a pronounced anti‐inflammatory effect. This last characteristic becomes crucial if implanted in the body. These materials can be used for in vivo applications, as transistor or electrode for electrical recording and for all the possible situations when there is contact between electronic circuits and living tissues.

  相似文献   

998.
A timesaving and convenient method for bacterial detection based on one‐step, one‐tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one‐pot synthesis, where N,N′‐dimethylacrylamide/polyethyleneglycol(PEG1900)‐bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA‐functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 101Escherichia coli cells.

  相似文献   

999.
5-(2-Phthalimidyl-3-methyl butanoylamino)isophthalic acid (5), as a novel diacid monomer containing phthalimide and flexible chiral groups, was prepared by the reaction of 2-phthalimidyl-3-methyl butyric acid chloride (4) with 5-aminoisophthalic acid (5AIPA) in dry N,N-dimethylacetamide (DMAc). A series of novel polyesters (PE)s containing phthalimide group was prepared by the reaction of diacid monomer 5 with several aromatic diols via direct polyesterification with the tosyl chloride/pyridine/dimethylformamide (DMF) system as a condensing agent. The resulting new polymers were obtained in good yields with inherent viscosities ranging between 0.37 and 0.61 dL g−1 and were characterized with FT-IR, 1H NMR, elemental and thermogravimetric analysis techniques. These polymers are readily soluble in amide type solvents such as DMAc, DMF, 1-methyl-2-pyrrolidone, hexamethyl triaminophosphine, dimethyl sulfoxide and protic solvents such as sulfuric acid. Thermogravimetric analysis showed that the 10% weight loss temperature in a nitrogen atmosphere was more than 345 °C, which indicates that the resulting PEs have a good thermal stability as well as excellent solubility.  相似文献   
1000.
Benzoxazine-bismaleimide blends: Curing and thermal properties   总被引:4,自引:0,他引:4  
A blend of bisphenol A based benzoxazine (Bz-A) and a bismaleimide (2,2-bis[4(4-maleimidophenoxy) phenyl] propane (BMI), was thermally polymerised in varying proportions and their cure and thermal characteristics were investigated. The differential scanning calorimetric analysis, supplemented by rheology confirmed a lowering of the cure temperature of BMI in the blend implying catalysis of the maleimide polymerisation by benzoxazine. FTIR studies provided evidences for the H-bonding between carbonyl group of BMI and -OH group of polybenzoxazine in the cured matrix. The cured matrix manifested a dual phase behaviour in SEM and DMTA with the minor phase constituted by polybenzoxazine dispersed in an interpenetrating polymer network (IPN) of polybenzoxazine and cured BMI. The IPN possessed improved thermal stability over the constituent polybenzoxazine. A benzoxazine monomer possessing allyl functional groups, 2,2′-bis(8-allyl-3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) propane (Bz-allyl) was reactively blended with the same bismaleimide in varying stoichiometric ratios (Bz-allyl/BMI), where the curing involved mainly Alder-ene reaction between allyl- and maleimides groups and ring-opening polymerisation of benzoxazine. The rheological analysis showed the absence of catalytic polymerisation of BMI in this case. The overall processing temperature was lowered in the blend owing to the co-reaction of the two systems to form a single-phase matrix. The cured resins of both Bz-A/BMI and Bz-allyl/BMI blends exhibited better thermal stability than the respective polybenzoxazines. The Tg of the IPN was significantly improved over that of polybenzoxazine (Bz-A). However, the co-reaction resulted in a marginal decrease in the Tg of the system in comparison to the polybenzoxazine (Bz-allyl).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号