首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   45篇
  国内免费   105篇
化学   255篇
晶体学   1篇
力学   158篇
综合类   2篇
数学   97篇
物理学   279篇
  2024年   1篇
  2023年   15篇
  2022年   1篇
  2021年   16篇
  2020年   17篇
  2019年   20篇
  2018年   12篇
  2017年   32篇
  2016年   26篇
  2015年   16篇
  2014年   35篇
  2013年   47篇
  2012年   20篇
  2011年   49篇
  2010年   34篇
  2009年   39篇
  2008年   51篇
  2007年   47篇
  2006年   43篇
  2005年   43篇
  2004年   36篇
  2003年   17篇
  2002年   18篇
  2001年   10篇
  2000年   26篇
  1999年   20篇
  1998年   9篇
  1997年   9篇
  1996年   12篇
  1995年   10篇
  1994年   4篇
  1993年   11篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有792条查询结果,搜索用时 15 毫秒
71.
Investigation of the cavitation activity during ultrasonic treatment of magnesium particles during nanostructuring has been performed. Cavitation activity is recorded in the continuous mode after switching the ultrasound on with the use of ICA-5DM cavitometer. It has been demonstrated that this characteristic of the cavitation zone may be varied in a wide range of constant output parameters of the generator. The speed and nature of the cavitation activity alteration depended on the concentration of Mg particles in the suspension and the properties of the medium in which the sonochemical treatment has been performed. Three stages of the cavitation area evolution can be distinguished: 1 – the initial increase in cavitation activity, 2 – reaching a maximum with a subsequent decrease, and 3 – reaching the plateau (or the repeated cycles with feedback loops of enlargement/reduction of the cavitation activity).The ultrasonically treated magnesium particles have been characterized by scanning electron microscopy, X-ray diffraction analysis and thermal analysis. Depending on the nature of the dispersed medium the particles can be characterized by the presence of magnesium hydroxide (brucite) and magnesium hydride. It is possible to reach the incorporation of magnesium hydride in the magnesium hydroxide/magnesium matrix by varying the conditions of ultrasonic treatment (duration of treatment, amplitude, dispersed medium etc.). The influence of the magnesium reactivity is also confirmed by the measurements of cavitation activity in organic dispersed media (ethanol, ethylene glycol) and their aqueous mixtures.  相似文献   
72.
This investigation examines the transient deformation and heat generation of a solid polyurethane subjected to dynamic compression. A special method is presented to prepare the solid polyurethane from raw materials which are commonly used to make polyurethane foams. Testing methods including infrared spectrum, differential scanning calorimetry, quasi-static and dynamic compression were applied to study the basic physical properties of the solid polyurethane. High-speed optical and infrared imaging systems are used to obtain visual and thermo-graphic images during impact tests. Under quasi-static compression, the solid polyurethane presents a good performance in toughness. This is confirmed by its Poisson's ratio. Under impact compression, the adiabatic heat generation are identified statistically. Temperature distribution confirms the fact of transient heat generation in specimens. Adiabatic self-heating mechanism provides a consideration to understand the negative strain-rate effect and post-yield softening effect found in the solid polyurethane. Mechanical properties including quasi-static and dynamic responses are related with the composition of molecular and structure of polymer.  相似文献   
73.
The vaporization of multicomponent fuel droplets was studied experimentally in a heated flow and the results were compared to the model proposed by Abramzon and Sirignano. The droplet was suspended on a permanent holder which was set up in a thermal wind-tunnel. This wind-tunnel was fitted with a video recording system and an infra-red camera. The period during which the droplet was suspended on the holder before the opening of the hot air flow damper was recorded. This first sequence corresponds to the droplet vaporization in natural convection, whose initial experiment conditions, especially diameter, temperature, composition of the droplet, are well known. Then the damper was turn on, and the sequence of forced convection begun. The initial diameter of the droplet was recorded by the video system. The other initial conditions of this second sequence cannot be determined experimentally. The distribution of temperature in the droplet and the surface temperature, the mass fraction distribution in the droplet and the surface mass fraction were unknown. These unknown parameters were determined by coupling our experiment with a model using “the film concept” in natural convection. Experimental results were compared with the calculations and found satisfactory, in natural convection as well as in forced convection initiated by this method. The method was tested in the case of a fuel mixture droplets (heptane–decane) for different initial concentrations and variable durations of the sequence in natural convection.  相似文献   
74.
Temporal sequences of planar laser-induced fluorescence (PLIF) images of several high-speed, transient flowfields created in a reflection-type shock tunnel facility were acquired. In each case, the test gas contained either nitric oxide or the hydroxyl radical, the fluorescent species. The processes of shock reflection from an endwall with a converging nozzle and of underexpanded free jet formation were examined. A comparison was also made between PLIF imaging and shadow photography. The investigation demonstrated some of the capabilities of PLIF imaging diagnostics in complex, transient, hypersonic flowfields, including those with combustion.Nomenclature A spontaneous emission rate - A las cross sectional area of laser sheet - B laser absorption rate - C opt constant dependent on optical arrangement, collection efficiency, etc. - D nozzle throat diameter - E p laser pulse energy - f J Boltzmann fraction of absorbing state - g spectral convolution of laser and absorption lineshapes - k Boltzmann constant - M s incident shock Mach number - N noise, root-mean-square signal fluctuation - P static pressure - P 1 initial pressure of test gas in shock tube - P a free jet ambient pressure - P s stagnation pressure - Q electronic quenching rate of excited state - S PLIF signal - t time between shock reflection and image acquisition - T static temperature - T s stagnation temperature - a mole fraction of absorbing species  相似文献   
75.
76.
《Applied Mathematical Modelling》2014,38(9-10):2673-2688
The in-bore process that occurs when a pistol is fired involves multiple physical models. This process is brief and typically measured in microseconds. Furthermore, propellants produce high temperatures and pressure gases during the burning process. These factors have made experimentation and simulation of the in-bore behavior of bullets difficult. This study uses a nonlinear transient finite element method (FEM) to simulate the in-bore behavior of a 9 mm bullet after being fired, where the chamber pressure is calculated by Vallier–Heydenreich formula and is used as the input loading. A gunshot experiment is conducted to verify the accuracy of computational results. The maximum difference between the numerical results and real experimental data is only 2.56% (including muzzle velocity and width and depth of engraved bullet vestiges), indicating that the simulation is credible.The discussed simulation is capable of obtaining the plastic deformation and kinematic status of the bullet and the stress history and distribution of the gun barrel. The numerical results can provide complete data of the entire in-bore process, improve the drawbacks during real in-bore ballistic research experiments, and assist engineers in designing and developing other novel systems. The simulation can save considerable time when designing small arms barrels.  相似文献   
77.
A paired queueing system arising in multimedia synchronization   总被引:1,自引:0,他引:1  
One of the most important and distinguishing features of multimedia applications is the integration of multiple media streams that have to be presented in a synchronized fashion. In this paper, a queueing system with a special service mechanism arising in multimedia synchronization is considered. The system is characterized by arrival of two types of customers (media streams), and servicing of customers (processing of packets) in pairs with one customer from each type for a pair. The exact transient system size probabilities are obtained as the stationary solutions do not exist for this system and these are illustrated numerically. The density function of the first return to the origin for the queueing system is also obtained.  相似文献   
78.
Complex non-equilibrium phase behaviors are a hallmark of natural self-assembling systems. Here we show how intricate phase transitions can be achieved through a chemically fueled reaction cycle to yield autonomous sol→gel→sol→gel→sol transitions. A relay of chemical transformations based on thiazinane metathesis leads to two consecutive transient gelations in a closed system. Within seconds of fuel addition to deactivated thiazinane monomers, an imine-based hydrogel forms that consists of fibrillar microspheres. This gel quickly loses its mechanical strength and forms a solution, from which a second aldehyde-based gel nucleates and remains stable for over one day. Overall, our reaction cycle gives rise to two consecutive re-entrant phase transitions without any experimental intervention.  相似文献   
79.
The theory of free-carrier absorption (FCA) is developed, in the extreme quantum limit when the carriers are assumed to populate only the lowest quantized energy level, for quasi-two and one-dimensional semiconducting quantum well structures where the carriers are scattered by ionized impurities. The radiation field is assumed to be polarized in the plane of the layer in the quasi-two-dimensional case and along the length of the wire in the quasi-one-dimensional case. Expressions for FCA are obtained for the cases where the impurities are either in the well (background impurities) or outside the well (remote impurities). Variation of FCA is numerically studied with photon frequency and well width.  相似文献   
80.
The dynamics of soot formation in turbulent ethylene-air nonpremixed counterflow flames is studied using direct numerical simulation (DNS) with a semi-empirical soot model and the discrete ordinate method (DOM) as a radiation solver. Transient characteristics of soot behavior are studies by a model problem of flame interaction with turbulence inflow at various intensities. The interaction between soot and turbulence reveals that the soot volume fraction depends on the combined effects of the local conditions of flow, temperature, and fuel concentration, while the soot number density depends predominantly on the high temperature regions. Depending on the relative strength between mixing and reaction, the effects of turbulence on the soot formation lead to three distinct paths in deviating the data points away from the laminar flame conditions. It is found that turbulence has twofold effects of increasing the overall soot yield by generating additional flame volume and of reducing soot by dissipating soot pockets out of high-temperature regions. The relative importance between the two effects depends on the relative length scales of turbulence and flame, suggesting that a nonmonotonic response of soot yield to turbulence level may be expected in turbulent combustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号