首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3437篇
  免费   280篇
  国内免费   346篇
化学   616篇
晶体学   14篇
力学   1601篇
综合类   40篇
数学   527篇
物理学   1265篇
  2024年   8篇
  2023年   48篇
  2022年   43篇
  2021年   56篇
  2020年   99篇
  2019年   81篇
  2018年   87篇
  2017年   112篇
  2016年   132篇
  2015年   117篇
  2014年   168篇
  2013年   311篇
  2012年   112篇
  2011年   187篇
  2010年   141篇
  2009年   179篇
  2008年   186篇
  2007年   209篇
  2006年   207篇
  2005年   172篇
  2004年   196篇
  2003年   136篇
  2002年   132篇
  2001年   99篇
  2000年   108篇
  1999年   102篇
  1998年   98篇
  1997年   91篇
  1996年   67篇
  1995年   62篇
  1994年   46篇
  1993年   46篇
  1992年   52篇
  1991年   49篇
  1990年   22篇
  1989年   17篇
  1988年   17篇
  1987年   17篇
  1986年   11篇
  1985年   12篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有4063条查询结果,搜索用时 0 毫秒
91.
92.
Flavohemoglobins have the particular capability of binding unsaturated and cyclopropanated fatty acids as free acids or phospholipids. Fatty acid binding to the ferric heme results in a weak but direct bonding interaction. Ferrous and ferric protein, in presence or absence of a bound lipid molecule, have been characterized by transient absorption spectroscopy. Measurements have been also carried out both on the ferrous deoxygenated and on the CO bound protein to investigate possible long-range interaction between the lipid acyl chain moiety and the ferrous heme. After excitation of the deoxygenated derivatives the relaxation process reveals a slow dynamics (350 ps) in lipid-bound protein but is not observed in the lipid-free protein. The latter feature and the presence of an extra contribution in the absorption spectrum, indicates that the interaction of iron heme with the acyl chain moiety occurs only in the excited electronic state and not in the ground electronic state. Data analysis highlights the formation of a charge-transfer complex in which the iron ion of the lipid-bound protein in the expanded electronic excited state, possibly represented by a high spin Fe III intermediate, is able to bind to the sixth coordination ligand placed at a distance of at 3.5 Å from the iron. A very small nanosecond geminate rebinding is observed for CO adduct in lipid-free but not in the lipid-bound protein. The presence of the lipid thus appears to inhibit the mobility of CO in the heme pocket.  相似文献   
93.
In light of the proposed equivalent method, a three-dimensional structural modeling of InSb infrared focal plane arrays (IRFPAs) is created, and the simulated strain distribution is identical to the deformation distribution on the top surface of InSb IRFPAs. After comparing the deformation features at different regions with the structural characteristics of IRFPAs, we infer that the flatness of InSb IRFPAs will be improved with a thinner indium bump array, and this inference is verified by subsequent simulation results. That is, when the diameter of indium bump is smaller than 20 μm, the simulated Z-components of strain on the whole top surface of InSb IRFPAs is uniform, and the deformation amplitude is small. When the diameter of indium bump is larger than 28 μm, the simulated Z-components of strain increases rapidly with the thicker indium bump, and the flatness of InSb IRFPAs is worsened rapidly. According to the changing trend of deformation amplitude with diameters of indium bump, and employing element pitches normalization method, a design rule of indium bump is proposed. That is, when the diameter of indium bump is shorter than 0.4 times the element pitch, the flatness of InSb IRFPAs is in an acceptable range. This design rule was supported by different IRFPAs with different formats delivered by several main research groups for achieving a longer cycling life.  相似文献   
94.
Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.  相似文献   
95.
Metallic glass (MG) is amorphous and has some outstanding properties such as ultrahigh strength, superior elasticity, and excellent thermo-plasticity. However, as MG is relatively new to the metal family, the relationship between its physical properties and amorphous structure is still unclear. This article aims to provide an insightful discussion through a comprehensive review about the investigations in the past few decades on the scientific mechanisms of this class of material. The discussion of the paper will include the following key aspects: (1) the formation mechanism of an amorphous structure through glass transition, (2) the structural characterization and models, (3) the micromechanics of plastic event and shear band, and (4) the correlation between the amorphous structure and its mechanical properties.  相似文献   
96.
97.
J.D. Clayton  J. Knap 《哲学杂志》2015,95(24):2661-2696
A phase field theory for coupled twinning and fracture in single crystal domains is developed. Distinct order parameters denote twinned and fractured domains, finite strains are addressed and elastic nonlinearity is included via a neo-Hookean strain energy potential. The governing equations and boundary conditions are derived; an incremental energy minimization approach is advocated for prediction of equilibrium microstructural morphologies under quasi-static loading protocols. Aspects of the theory are analysed in detail for a material element undergoing simple shear deformation. Exact analytical and/or one-dimensional numerical solutions are obtained in dimensionless form for stress states, stability criteria and order parameter profiles at localized fractures or twinning zones. For sufficient applied strain, the relative likelihood of localized twinning vs. localized fracture is found to depend only on the ratio of twin boundary surface energy to fracture surface energy. Predicted criteria for shear stress-driven fracture or twinning are often found to be in closer agreement with test data for several types of real crystals than those based on the concept of theoretical strength.  相似文献   
98.
99.
The light-driven crawling of a molecular crystal that can form three phases, (α, β, and γ) is presented. Laser irradiation of the molecular crystal can generate phase-dependent transient elastic lattice deformation. The resulting elastic lattice deformation that follows scanning irradiation of a laser can actuate the different phases of molecular crystal to move with different velocity and direction. Because the γ phase has a large Young's modulus (ca. 26 GPa), a force of 0.1 μN can be generated under one laser spot. The generated force is sufficient to actuate the γ-formed molecular crystals in a wide dimensional range to move longitudinally at a velocity of about 60 μm min−1, which is two orders of magnitude faster than the α and β phases.  相似文献   
100.
This paper is concerned with the experimental testing and the constitutive modelling of a thermoplastic microcellular polyethylene-terephthalate (MC-PET) foam on the temperature range of 21–210 °C in order to investigate the temperature-dependent performance of the applied parallel viscoelastic-viscoplastic material model. By means of carefully designed uniaxial mechanical tests in temperature chamber, the viscous, elastic and yielding behaviours of the investigated material are identified, which are then applied for selecting suitable viscoelastic-viscoplastic constitutive models. The material characterization process is conducted using finite-element-based fitting method, including also the analysis of the applied numerical optimization algorithm. The fitting results are used to analyse the parameter sensitivity and to propose closed-form analytical relations for the temperature dependency of the material parameters. Finally, the utilisation of the analytical temperature functions for speeding up the parameter-fitting process is also demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号