首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21651篇
  免费   2480篇
  国内免费   2081篇
化学   11685篇
晶体学   243篇
力学   2788篇
综合类   213篇
数学   7017篇
物理学   4266篇
  2024年   50篇
  2023年   215篇
  2022年   459篇
  2021年   540篇
  2020年   805篇
  2019年   639篇
  2018年   592篇
  2017年   707篇
  2016年   930篇
  2015年   719篇
  2014年   986篇
  2013年   1777篇
  2012年   1303篇
  2011年   1184篇
  2010年   1080篇
  2009年   1365篇
  2008年   1433篇
  2007年   1521篇
  2006年   1238篇
  2005年   1050篇
  2004年   1016篇
  2003年   862篇
  2002年   796篇
  2001年   630篇
  2000年   592篇
  1999年   623篇
  1998年   516篇
  1997年   400篇
  1996年   339篇
  1995年   336篇
  1994年   247篇
  1993年   221篇
  1992年   164篇
  1991年   155篇
  1990年   104篇
  1989年   89篇
  1988年   69篇
  1987年   61篇
  1986年   54篇
  1985年   56篇
  1984年   63篇
  1983年   29篇
  1982年   42篇
  1981年   30篇
  1980年   30篇
  1979年   30篇
  1978年   14篇
  1977年   21篇
  1976年   11篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
To meet the processing requirements of resin transfer moulding(RTM)technology,reactive diluent containing m-phenylene moiety was synthesized to physically mixed with phenylethynyl terminated cooligoimides with well-designed molecular weights of 1500-2500 g/mol derived from 4,4’-(hexafluoroisopropylidene)diphthalic anhydride(6 FDA),3,4’-oxydianiline(3,4’-ODA)and m-phenylenediamine(m-PDA).This blend shows low minimum melting viscosity(<1 Pa·s)and enlarged processing temperature window(260–361℃).FPI-R-1 stays below 1 Pa·s for2 h at 270℃.The relationship between the molecular weight of the blend and its melting stability was first explored.Blending oligoimides with lower molecular weights exhibit better melting stability.Upon curing at 380℃for 2 h,the thermosetting polyimide resin demonstrates superior heat resistance(Tg=420-426℃).  相似文献   
992.
Favipiravir finished dosage was approved for emergency use in many countries to treat SARS-CoV-2 patients. A specific, accurate, linear, robust, simple, and stability-indicating HPLC method was developed and validated for the determination of degradation impurities present in favipiravir film-coated tablets. The separation of all impurities was achieved from the stationary phase (Inert sustain AQ-C18, 250 × 4.6 mm, 5-μm particle) and mobile phase. Mobile phase A contained KH2PO4 buffer (pH 2.5 ± 0.05) and acetonitrile in the ratio of 98:2 (v/v), and mobile phase B contained water and acetonitrile in the ratio of 50:50 (v/v). The chromatographic conditions were optimized as follows: flow rate, 0.7 mL/min; UV detection, 210 nm; injection volume, 20 μL; and column temperature, 33°C. The proposed method was validated per the current International Conference on Harmonization Q2 (R1) guidelines. The recovery study and linearity ranges were established from the limit of quantification to 150% optimal concentrations. The method validation results were found to be between 98.6 and 106.2% for recovery and r2 = 0.9995–0.9999 for linearity of all identified impurities. The method precision results were achieved below 5% of relative standard deviation. Forced degradation studies were performed in chemical and physical stress conditions. The compound was sensitive to chemical stress conditions. During the study, the analyte degraded and converted to unknown degradation impurities, and its molecular mass was found using the LC–MS technique and established degradation pathways supported by reaction of mechanism. The developed method was found to be suitable for routine analysis of research and development and quality control.  相似文献   
993.
薛王欣  张婧  楚亮 《化学通报》2022,85(10):1154-1160,1223
钙钛矿太阳电池是一项颠覆性的光伏技术,具有能量转化效率高、生产成本低、制备工艺简单等优势。当前,钙钛矿太阳能电池的认证效率已达25.7%,但其面临着严重的商业化瓶颈,如稳定性差、模组效率相对低、铅毒性等,且这些问题相互关联。本文简述了钙钛矿太阳能电池的工作原理和器件结构,并归纳总结了在解决钙钛矿太阳能电池稳定性、封装和模组化等商业化瓶颈问题方面的主要研究进展。最后,本文提出了钙钛矿光伏商业化进程中值得关注的解决措施。  相似文献   
994.
(SO4)-rich silicate analogue borosulfates are able to stabilise cationic cluster-like and chain-like aggregates. Single crystals of [Au3Cl4][B(S2O7)2] and [Au2Cl4][B(S2O7)2](SO3) were obtained by solvothermal reaction with SO3, and the electronic properties were investigated by means of density functional theory–based calculations. [Au3Cl4][B(S2O7)2] exhibits a cluster-like cation, and the cationic gold-chloride strands in [Au2Cl4][B(S2O7)2](SO3) are found to resemble one-dimensional metallic wires. This is confirmed by polarisation microscopy.  相似文献   
995.
Polyimide nanocomposites having low-k and UV shielding properties have been developed using fluorine functionalized graphene oxide and bis(quinoline amine) based polyimide. The polyimide was synthesized using bis(quinoline amine) and pyromellitic dianhydride at appropriate experimental conditions, and its molecular structure was confirmed through various spectral analysis such as FTIR and NMR. The polyimide (PI) composites were prepared using bis(quinoline amine), pyromellitic dianhydride, and separately filled with 1, 5, 10 wt% of fluorinated graphene oxide (FGO) through in situ polymerization. The polymer composites were characterized using thermo gravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). In addition, the water contact angle, dielectric behavior, and UV–Vis shielding behavior of FGO/PI composites were evaluated. The value of the water contact angle of the polyimide was increased with increment of FGO in the polyimide matrix. The highest water contact angle of polyimide composites observed 108° was obtained for 15 wt% FGO reinforced polyimide composite. The value of the dielectric constant for neat, 1, 5, and 15 wt% FGO reinforced polyimide composites was obtained as 4.5, 3.7, 2.6, and 2.0, respectively. It is also observed from by UV–Vis spectroscopy analysis that the FGO reinforced polyimide composites have good UV shielding behavior.  相似文献   
996.
We have characterized a sulfobetaine stationary phase based on 1.7 μm ethylene-bridged hybrid organic–inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of a column packed with this material was determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases, and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups, and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2–10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed a greatly improved peak shape.  相似文献   
997.
Phosphors with outstanding luminescence thermal stability are desirable for high-power phosphor-converted light-emitting diode (pc-LED) lightings. High structural rigidity and large bandgap of phosphor hosts are helpful to suppress nonradiative relaxation of optical centers and realize excellent thermal stability. Unfortunately, few host materials simultaneously possess aforementioned structural features. Herein, we confirm that Sr3(PO4)2 (SPO) phosphate possesses high structural rigidity (Debye temperature, ΘD = 559 K) and large bandgap (Eg = 8.313 eV) by density functional theory calculations. As expected, Eu2+-doped SPO purple-blue phosphors show extraordinary thermal stability. At 150/300 °C, SPO:5%Eu2+ presents emission loss of only 4%/8% and a predicated ultrahigh thermal quenching temperature of 973 °C. The most strikingly discoveries here are that thermal-induced emission compensation appears within two distinct Eu2+ sites of SPO host. The outstanding thermal stability, on one hand, is attributed to rigid structure and large bandgap of host that inhibits nonradiative relaxation of Eu2+ and on the other hand, the emission self-compensation of Eu2+. Benefiting from synergistic effect of emission compensation and nonradiative transition restriction of Eu2+, as-prepared SPO:5%Eu2+ purple-blue phosphor not only presents superior thermal stability but also high internal quantum efficiency of 95.1% and excellent hydrolysis resistant. Some advanced applications are explored including white LED lighting and wide-color-gamut display. Our work provides in-deep insights into structure-property relationships of thermally stable phosphors.  相似文献   
998.
Cr3+-doped phosphors show significant application potential in near-infrared (NIR) light-emitting diodes (LEDs). However, the development of thermally stable and efficient NIR phosphors still faces enormous challenges. Herein, NIR phosphors K2NaMF6:Cr3+ (M3+ = Al3+, Ga3+, and In3+) were synthesized by the hydrothermal method. The represented K2NaAlF6:Cr3+ phosphor can be effectively excited by blue light (~430 nm) to present broadband emission at half a maximum of 96 nm peaking at ~ 728 nm. Meanwhile, the K2NaAlF6:Cr3+ phosphor exhibits excellent internal quantum efficiency (IQE = 68.08%) and nearly zero-thermal-quenching behavior, which is able to maintain 96.5% emission intensity at 150 °C of the initial value at 25 °C. The NIR phosphor-converted LED was fabricated based on K2NaAlF6:Cr3+ phosphor and a blue LED chip, showing a NIR output power of 394.39 mW at 300 mA with a high photoelectric conversion efficiency of 10.9% at 20 mA. Using the high-power NIR LED as a lighting source, transparent and quick veins imaging as well as non-destructive testing were demonstrated, suggesting the NIR phosphor has a wide range of practical applications.  相似文献   
999.
To study the influence of different concentrations of zinc oxide (ZnO)/silicon dioxide (SiO2) composite coating on hydrophobic property and mechanical stability of paper mulch film, three kinds of ZnO/SiO2 composite coating paper mulch films (2%, 4%, 6%) with different coating substance contents were prepared by brush coating method. Through particle size analysis, contact angle, rolling angle and mechanical stability test, combined with scanning electron microscope, three-dimensional morphology and roughness measuring instrument, the optimal concentration of ZnO/SiO2 composite coated paper mulch film was screened out. Through acid-base salt corrosion test, silver mirror reaction and surface self-cleaning, the optimal concentration of composite coated paper mulch film was compared with the original paper mulch film to prove its excellent chemical stability and hydrophobicity. The results show that the paper mulch film with 4% coating material has excellent hydrophobicity and mechanical stability, can effectively reduce the surface roughness of paper mulch film, and has remarkable effects in resisting acid, alkali and salt and self-cleaning.  相似文献   
1000.
Low-cost and high-efficiency production of silicon-based material is the key to improve the energy density of lithium-ion batteries. Herein, we propose a novel structure of FeSi2–Si eutectic nanoparticles protected by the SiOx shell. FeSi2, as a buffer phase can improve the electrochemical stability of the electrode. A SiOx shell is formed on the surface of the nanoparticles through the passivation process. SiOx encapsulated FeSi2–Si eutectic nanoparticles exhibit excellent capacity of 674.9 mAh/g after 500 charge/discharge cycles. The capacity retention rate is above 90% after the stabilization process. This work provides a new nanomaterial design for high performance silicon-based anode materials of lithium-ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号