首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12025篇
  免费   1497篇
  国内免费   3607篇
化学   12538篇
晶体学   269篇
力学   238篇
综合类   52篇
数学   36篇
物理学   3996篇
  2024年   31篇
  2023年   183篇
  2022年   397篇
  2021年   454篇
  2020年   655篇
  2019年   440篇
  2018年   391篇
  2017年   569篇
  2016年   659篇
  2015年   605篇
  2014年   766篇
  2013年   1082篇
  2012年   825篇
  2011年   1100篇
  2010年   775篇
  2009年   930篇
  2008年   833篇
  2007年   933篇
  2006年   818篇
  2005年   703篇
  2004年   590篇
  2003年   527篇
  2002年   376篇
  2001年   328篇
  2000年   301篇
  1999年   272篇
  1998年   258篇
  1997年   219篇
  1996年   186篇
  1995年   173篇
  1994年   148篇
  1993年   139篇
  1992年   117篇
  1991年   79篇
  1990年   57篇
  1989年   43篇
  1988年   51篇
  1987年   28篇
  1986年   21篇
  1985年   18篇
  1984年   7篇
  1983年   4篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1978年   2篇
  1977年   4篇
  1973年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Recent experiments have shown the coexistence of both large unoxidized and oxidized regions on graphene oxide (GO), but the underlying mechanism for the formation of the GO atomic structure remains unknown. Now, using density functional calculations, 52 oxidation pathways for local pyrene structures on GO were identified, and a kinetic profile for graphene oxidation with a high correlation between oxidation loci was proposed, which is different from the conventional view, which entails a random distribution of oxidation loci. The high correlation is an essential nature of graphene oxidation processes and can be attributed to three crucial effects: 1) breaking of delocalized π bonds, 2) steric hindrance, and 3) hydrogen‐bond formation. This high correlation leads to the coexistence of both large unoxidized and oxidized regions on GO. Interestingly, even in oxidized regions on GO, some small areas of sp2‐hybridized domains, similar to “islands”, can persist because of steric effects.  相似文献   
942.
The treatment of graphene oxide (GO) with potassium thioacetate followed by an aqueous work‐up yields a new material via the ring‐opening of the epoxide groups. The new material is a thiol‐functionalized GO (GO‐SH) which is able to undergo further functionalization. Reaction with butyl bromide gives another new material, GO‐SBu, which shows significantly enhanced thermal stability compared to both GO and GO‐SH. The thiol‐functionalized GO material showed a high affinity for gold, as demonstrated by the selective deposition of a high density of gold nanoparticles.  相似文献   
943.
We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)–magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non‐enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP–magnetic nanoparticle hybrids are supported on micron‐scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes.  相似文献   
944.
945.
纳米结构Au/Fe_2O_3的制备、表征及催化氧化性能   总被引:1,自引:0,他引:1  
分别以纳米和块状氧化铁为载体,通过沉积沉淀法制备了Au/Nano-Fe2O3和Au/Bulk-Fe2O3,并对其进行了表征和催化氧化性能测试。结果表明:对于Au/Nano-Fe2O3,5 nm Au颗粒被尺寸相当的Nano-Fe2O3所包覆,形成新颖的类似核壳结构;对于Au/Bulk-Fe2O3,3 nm Au颗粒高度分散于Bulk-Fe2O3的表面。在1-苯乙醇的氧化反应中,Au/Nano-Fe2O3显示出比Au/Bulk-Fe2O3更好的催化活性。活性的增强主要与小尺寸的Nano-Fe2O3以及Au和Nano-Fe2O3更大的接触界面有关。相比于广泛受到重视的Au的尺寸效应来说,对于Au/Nano-Fe2O3而言,Fe2O3尺寸的影响更大。  相似文献   
946.
Novel liver-specific nitric oxide(NO) releasing drugs with bile acid as both the NO carrier and targeting ligand were designed and synthesized by direct nitration of the hydroxyl group in bile acids or the 3-Ohydroxyl alkyl derivatives,with the intact 24-COOH being preserved for hepatocyte specific recognition.Preliminary biological evaluation revealed that oral administrated targeted conjugates could protect mice against acute liver damage induced by acetaminophen or carbon tetrachloride.The nitrate level in the liver significantly increased after oral administration of 1e while nitrate level in the blood did not significantly change.Co-administration of ursodeoxycholic acid(UDCA) significantly antagonized the increase of nitrate in the liver resulted by administration of 1e.  相似文献   
947.
Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.  相似文献   
948.
The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer(IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density(0.67 W cm-2)and electrical efficiency(68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer(3.53×10-5kPa).IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon(S : C) ratio, gas flow pattern(co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature(1223 K–1173 K)and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode(1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4 : 1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.  相似文献   
949.
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.  相似文献   
950.
Sn-doped TiO_2 nanoparticles with high surface area of 125.7 m~2·g~(-1) are synthesized via a simple one-step hydrothermai method and explored as the cathode catalyst support for proton exchange membrane fuel cells.The synthesized support materials are studied by X-ray diffraction analysis,energy dispersive X-ray spectroscopy and transmission electron microscopy.It is found that the conductivity has been greatly improved by the addition of 30 mol%Sn and Pt nanoparticles are well dispersed on Ti_(0.7)Sn_(0.3)O_2 support with an average size of 2.44 run.Electrochemical studies show that the Ti_(0.7)Sn_(0.3)O_2 nanoparticles have excellent electrochemical stability under a high potential compared to Vulcan XC-72.The as-synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 exhibits high and stable electrocatalytic activity for the oxygen reduction reaction.The Pt/Ti_(0.7)Sn_(0.3)O_2 catalyst reserves most of its electrochemically active surface area(ECA),and its half wave potential difference is 11 mV,which is lower than that of Pt/XC-72(36 mV) under 10 h potential hold at 1.4 V vs.NHE.In addition,the ECA degradation of Pt/Ti_(0.7)Sn_(0.3)O_2is 1.9 times lower than commercial Pt/XC-72 under 500 potential cycles between 0.6 V and 1.2 V vs.NHE.Therefore,the as synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 can be considered as a promising alternative cathode,catalyst for proton exchange membrane fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号