首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11934篇
  免费   1485篇
  国内免费   3617篇
化学   12462篇
晶体学   268篇
力学   237篇
综合类   52篇
数学   36篇
物理学   3981篇
  2024年   27篇
  2023年   176篇
  2022年   333篇
  2021年   454篇
  2020年   654篇
  2019年   437篇
  2018年   391篇
  2017年   569篇
  2016年   658篇
  2015年   601篇
  2014年   762篇
  2013年   1078篇
  2012年   824篇
  2011年   1100篇
  2010年   775篇
  2009年   930篇
  2008年   833篇
  2007年   933篇
  2006年   818篇
  2005年   703篇
  2004年   590篇
  2003年   527篇
  2002年   376篇
  2001年   328篇
  2000年   301篇
  1999年   272篇
  1998年   258篇
  1997年   219篇
  1996年   186篇
  1995年   173篇
  1994年   148篇
  1993年   139篇
  1992年   117篇
  1991年   79篇
  1990年   57篇
  1989年   43篇
  1988年   51篇
  1987年   28篇
  1986年   21篇
  1985年   18篇
  1984年   7篇
  1983年   4篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1978年   2篇
  1977年   4篇
  1973年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
《Current Applied Physics》2015,15(10):1143-1147
The structural and electrochemical properties of manganese oxide (MnO2) electrodeposited by potentiostatic and galvanostatic conditions are studied. X‒ray diffraction analyses confirm identical MnO2 phase (ramsdellite) are deposited under potentiostatic and galvanostatic conditions. Under comparable current density during electrodeposition, MnO2 deposited by galvanostatic condition shows smaller crystallite size, less compact layered structure, higher surface area and wider band gap, in comparison to the potentiostatic deposition. The MnO2 morphology difference under different electrodeposition conditions contributes to different capacitive behaviors. The lower compactness of MnO2 deposited galvanostatically renders facile ions diffusion, leading to higher specific capacitance with low equivalent series resistance. The findings suggest galvanostatic electrodeposition is suitable to produce MnO2 nanostructure for supercapacitor application.  相似文献   
922.
《Current Applied Physics》2015,15(10):1130-1133
We propose a distinct approach to implement a laterally single diffused metal-oxide-semiconductor (LSMOS) FET with only one impurity doped p-n junction. In the LSMOS, a single p-n junction is first created using lateral dopant diffusion. The channel is formed in the p region of the p-n junction and the n region acts as the drift region. Two distinct metals of different work function are used to form the “n+” source/drain regions and “p+” body contact using the charge plasma concept. We demonstrate that the LSMOS is similar in performance to a laterally double diffused metal-oxide-semiconductor (LDMOS) although it has only one impurity doped p-n junction. The LSMOS exhibits a breakdown voltage of ∼50.0 V, an average ON-resistance of 48.7 mΩ-mm2 and a peak transconductance of 53.6 μS/μm similar to that of a comparable LDMOS.  相似文献   
923.
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples.  相似文献   
924.
In this paper, electromembrane extraction coupled with differential pulse voltammetry (DPV) on a reduced graphene oxide modified screen‐printed carbon electrode (RGO‐SPCE) for the determination of dextromethorphan (DXM) in urine and plasma has been described. DXM migrated from 4 mL of a donor phase across a thin layer of 2‐nitrophenyl octyl ether (NPOE) immobilized in the pores of a porous hollow fiber, into a 20 µL acceptor phase (HCl) present inside the lumen of the fiber. Then, 15 µL of a 0.1 M NaOH solution was added to the acceptor phase and the mixture was analyzed using DPV.  相似文献   
925.
Titanium dioxide (TiO2) particles were introduced to improve the solar reflectance of high-density polyethylene (HDPE). The organic-inorganic hybrids were fabricated by melt blending. A series of characterizations were taken to study the crystallization behavior, morphology, solar reflectance, and real cooling property. TiO2 particles acted as nucleation agents in the HDPE matrix and made the HDPE form thick lamellar crystals. TiO2 particles could disperse well into the HDPE matrix under 2.5 wt.% loading but agglomerated with 3 wt.%. Solar reflectance was related to the reflective index of TiO2 and the microstructure of HDPE. The real cooling property depended on the solar reflectance and the dispersion of the TiO2 particles in the HDPE matrix.  相似文献   
926.
Poly(D,L‐lactide‐co‐glycolide) 50:50 (PLGA)/graphene oxide (GO) nanocomposite films were prepared with various GO weight fractions. A significant enhancement of mechanical properties of the PLGA/GO nanocomposite films was obtained with GO weight fractions. The incorporation of only 5 wt% of GO resulted in an ~2.5‐fold and ~4.7‐fold increase in the tensile strength and Young's modulus of PLGA, respectively. The thermomechanical behaviors of composite films were investigated by dynamic mechanical analysis. Results indicated that the values of Tg and storage moduli of the PLGA/GO composites were higher than those of the pristine PLGA. The improvement in oxygen barrier properties of composites was presumably attributed to the filler effect of the randomly dispersed GO throughout the PLGA matrix. In this work, we also studied in vitro biodegradation behavior. PLGA/GO composite films were hydrolyzed at 37°C for periods up to 49 days. Because of the presence of GO nanosheets, degradation of composite films took place more slowly with increasing GO amounts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
927.
This work demonstrates the successful incorporation of functionalized single‐walled carbon nanotubes (f‐SWCNTs) into the phenylboronate‐diol crosslinked polymer gel to create a hybrid system with reversible sol–gel transition. The phenylboronic acid‐containing and diol‐containing polymers were first separately prepared by the reversible addition–fragmentation chain transfer polymerization. Covalent functionalization of single‐walled carbon nanotubes (SWCNTs) with an azide‐derivatized, diol‐containing polymer was then accomplished by a nitrene addition reaction. Subsequently, the hybrid gels were prepared by crosslinking the mixture of f‐SWCNTs and diol‐containing polymer with the phenylboronic acid‐containing polymer. The hybrid gel has been characterized by scanning electron microscopy (SEM) and rheological analysis. The SEM measurement demonstrated a homogeneous dispersion of f‐SWCNTs within the gel matrices. Rheological experiments also demonstrated that the hybrid gel exhibited storage moduli significantly higher than those of the native gel obtained from the phenylboronic acid‐containing and diol‐containing polymers. The hybrid gel can be switched into their starting polymer (f‐SWCNTs) solutions by adjusting the pH of the system. Moreover, the hybrid gel revealed a self‐healing property that occurred autonomously without any outside intervention. By employing this dynamic character, it is possible to regenerate the used gel, and thus, it has the potential to perform in a range of dynamic or bioresponsive applications Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
928.
Tetragonal tungsten bronze (TTB) films have been synthesised on Pt(111)/TiO2/SiO2/Si substrates from Ba2LnFeNb4O15 ceramics (Ln = La, Nd, Eu) by RF magnetron sputtering. X-ray diffraction measurements evidenced the multi-oriented nature of films with some degrees of preferential orientation along (111). The dependence of the dielectric properties on temperature and frequency has been investigated. The dielectric properties of the films are similar to those of the bulk, i.e., ε ∼150 and σ ∼10−6 Ω−1 cm−1 at 1 MHz and room temperature. The films exhibit two dielectric anomalies which are attributed to Maxwell Wagner polarization mechanism and relaxor behaviour. Both anomalies are sensitive to post-annealing under oxygen atmosphere and their activation energies are similar Ea ∼0.30 eV. They are explained in terms of electrically heterogeneous contributions in the films.  相似文献   
929.
In this study, a sol–gel TiO2 thin film has been spin-coated on a commercial ITO glass substrate as the extended-gate field effect transistor (EGFET) for hydrogen ion sensing. The as-deposited films are further annealed at various temperatures (Ta) under ambient atmosphere. It is found that the bi-layer structure of TiO2/ITO EGFET exhibits good linear sensitivity from pH 1 to 11. Anatase TiO2 appeared as early as Ta = 200 °C and a brookite (121) diffraction evolved at Ta = 500 °C. No prominent influence on the surface fine structures could be found at higher Ta. Due to the reduction or disappearance of the surface hydroxyl groups on TiO2, the sensitivities of the TiO2/ITO pH-EGFET device are rapidly reduced. However, the influence of the conductivity decay for ITO substrates annealed at high Ta could not be excluded. A maximum sensitivity 61.44 mV/pH is achieved as Ta = 300 °C.The bi-layer structure of TiO2/ITO exhibits better long-term stability than the traditional ITO sensing membranes. In addition, the asymmetric hysteresis is more significant in alkaline buffer solutions, which could be explained by a site-binding model because the diffusion of H+ ions into the buried sites of the sensing film is more rapid than that of OH ions.  相似文献   
930.
Electroluminescent (EL) properties of Ir(III) complex, [(2,4-diphenylquinoli-ne)]2Iridium picolinic acid N-oxide [(DPQ)2Ir(pic-N-O)] were investigated using PEDOT:PSS and reduced graphene oxide (rGO) as a hole transport layer for solution processable phosphorescent organic light-emitting diodes (PhOLEDs). High performance solution-processable PhOLED with PEDOT:PSS and (DPQ)2Ir(pic-N-O) (8 wt%) doped CBP:TPD:PBD (8:56:12) host emission layer were fabricated to give a high luminance efficiency (LE) of 26.9 cd/A, equivelent to an external quantum efficiency (EQE) of 14.2%. The corresponding PhOLED with rGO as a hole transport layer exhibited the maximum brightness and LE of 13540 cd/m2 and 16.8 cd/A, respectively. The utilization of the solution processable rGO thin films as the hole transport layer offered the great potential to the fabrication of solution processable PhOLEDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号