首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10578篇
  免费   1071篇
  国内免费   2963篇
化学   10990篇
晶体学   232篇
力学   116篇
综合类   43篇
数学   17篇
物理学   3214篇
  2024年   28篇
  2023年   176篇
  2022年   354篇
  2021年   393篇
  2020年   583篇
  2019年   388篇
  2018年   341篇
  2017年   500篇
  2016年   547篇
  2015年   516篇
  2014年   621篇
  2013年   881篇
  2012年   638篇
  2011年   872篇
  2010年   600篇
  2009年   742篇
  2008年   657篇
  2007年   778篇
  2006年   685篇
  2005年   586篇
  2004年   504篇
  2003年   463篇
  2002年   342篇
  2001年   304篇
  2000年   289篇
  1999年   269篇
  1998年   251篇
  1997年   215篇
  1996年   184篇
  1995年   170篇
  1994年   145篇
  1993年   138篇
  1992年   116篇
  1991年   78篇
  1990年   56篇
  1989年   42篇
  1988年   49篇
  1987年   27篇
  1986年   20篇
  1985年   17篇
  1984年   7篇
  1983年   3篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1978年   2篇
  1977年   4篇
  1973年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
在水热条件下,以碳球为模板合成了Mn2O3空心球,并用作锂硫电池的载硫基底材料。测试结果表明载硫量为51%的Mn2O3-S复合材料显示了较高的比容量,良好的循环稳定性和倍率性能。循环100圈后,最终可逆容量仍保持657 mA·g-1,证明该Mn2O3空心球是一种有潜力的载硫基底材料。  相似文献   
952.
953.
In the structure of 2‐(4‐chloroanilino)‐1,3,2λ4‐diazaphosphol‐2‐one, C12H11ClN3OP, each molecule is connected with four neighbouring molecules through (N—H)2…O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 33(12) and R 43(14) hydrogen‐bond ring motifs, combined with a C (4) chain motif. The hole constructed in the tubular architecture includes a 12‐atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N—H groups of the diazaphosphole ring, not co‐operating in classical hydrogen bonding, takes part in an N—H…π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen‐bond pattern. The energies of the N—H…O and N—H…π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen‐bonded cluster of molecules as the input file for the chemical calculations. In the 1H NMR experiment, the nitrogen‐bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2J H–P coupling constant.  相似文献   
954.
Polyethylene glycol (PEG) as a phase change material possesses three obstacles, such as leakage, low thermal conductivity and low thermal stability. A novel solid-solid phase change material (PCM) based on functionalized graphene oxide (GO), Polyethylene glycol (PEG) was prepared, and the three obstacles of PEG as a PCM was solved in one and the same material. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman and Transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and thermogravimetric analysis/infrared spectrometry (TG-IR) were used to study the properties of supporting material and composite PCM (CPCM). The results indicated that the PEG was grafted on the surface of the supporting material; Compared with pure PEG, the latent heat of CPCM with 9.6 wt% supporting material decreased only 5.3%, however, the thermal conductivity of CPCM increased 111% and the heat peak release rate of CPCM decreased 33.4%.  相似文献   
955.
Chemical modification of graphene oxide has become a popular method for imparting unique properties to extend its application. Here, we show a simple way to synthesize amphiphilic graphene oxide (AGO) by grafting quaternary ammonium salt onto GO sheets. The AGO sheets not only showed high thermal stability and good dispersion in many polar and non-polar solvents in comparison to GO sheets but also the chemical modification maintained the two-dimensional structure. As a result, the AGO sheets improve the interfacial interaction between ethylene-vinyl acetate copolymer (EVA) and linear low-density polyethylene (LLDPE). Because of the large size of AGO, the location of AGO is very dependent on the mixing strategy. The AGO was dispersed in the EVA phase when AGO was mixed first with EVA and then with LLDPE, whereas it was confined in the LLDPE phase when AGO was mixed first with LLDPE and then with EVA. AGO sheets were found at the interface of LLDPE and EVA when AGO, EVA, and LLDPE were mixed together, suggesting that AGO has a high interfacial interaction with both LLDPE and EVA. These high interfacial interactions lead to high tensile strength, Young's modulus, complex viscosity and crystallization temperature in comparison to the EVA/LLDPE blends without AGO sheets.  相似文献   
956.
A convenient and industrially scalable method for synthesis of homogeneous nanocomposite films comprising poly(styrene‐stat‐butyl acrylate) and nanodimensional graphene oxide (GO) or reduced GO (rGO) is presented. Importantly, the nanocomposite latex undergoes film formation at ambient temperature, thus alleviating any need for high temperature or high pressure methods such as compression molding. The method entails synthesis of an aqueous nanocomposite latex via miniemulsion copolymerization relying on nanodimensional GO sheets as sole surfactant, followed by ambient temperature film formation resulting in homogeneous film. For comparison, a similar latex obtained by physical mixing of a polymer latex with an aqueous GO dispersion results in severe phase separation, illustrating that the miniemulsion approach using GO as surfactant is key to obtaining homogeneous nanocomposite films. Finally, it is demonstrated that the GO sheets can be readily reduced to rGO in situ by heat treatment of the film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2289–2297  相似文献   
957.
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase‐separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 532–541  相似文献   
958.
Composites formed by poly(3,4‐ethylenedioxythiophene) and alumina (PEDOT/Al2O3) have been prepared by in situ anodic polymerization. For this purpose, the stability of 1:1 and 4:1 monomer:alumina aqueous solutions has been examined as a function of the pH (2.3, 4.0, 7.0, 8.8, or 10.8). Results indicate that the monomer behaves as a dispersant that remains stable at the studied basic pHs despite they are close to the isoelectric point of alumina. Although the thermal stability of the composites is considerably affected by the pH of the reaction medium, its influence on the surface morphology is very small. Independently, of the synthetic conditions, the electrochemical properties were better for PEDOT/Al2O3 than for pure PEDOT, reflecting that alumina particles promote the charge mobility. The highest specific capacitance (SC; 141 F/g), which was 55% higher than that obtained for pure PEDOT, was achieved for the composite prepared at pH = 8.8 using a 4:1 monomer:alumina ratio. These conditions favor the participation of OH groups as secondary doping agents without degrading the polymer matrix and enhance the specific surface of the films, facilitating the ionic mobility. On the other hand, application of a multi‐step polymerization strategy has shown that interfaces originated by consecutive steps enhance the SC. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1131–1141  相似文献   
959.
In situ photoelastic‐modulated Fourier transform infrared reflection absorption spectroscopy has been applied for the investigation of interfacial stability of organothiol and organosilane monolayer films on nanocrystalline zinc oxide thin films. It has been shown that for octadecyltriethoxysilane films, exposure to high water activities results in physisorption of water in the cross‐linked film. This high water activity at the interface leads to a reversible wet de‐adhesion of the interfacial silanol groups from the ZnO surface. However, the organothiol seems to form a denser monolayer and a stable by S–Zn bond that is resistant to the competition with adsorbed water. The reversible attachment for cross‐linked organosilanol films has been demonstrated for the first time by means of an in situ spectroscopic method on model ZnO surfaces. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
960.
In this study, different types of graphene were synthesized to investigate hydrogen adsorption capacity at different pressures (0–34 bar) at room temperature (298 K). Graphene and nanoporous graphene were prepared by Chemical Vapor Deposition (CVD) method, using methane as a carbon source at a temperature of 900 °C over copper plates and nickel oxide nanocatalyst. The nickel oxide nanocatalyst was prepared by sol–gel method, whereas graphene oxide was prepared through modified Hummer's method. The products were characterized by X‐ray diffraction, field emission‐scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller and Raman spectroscopy. The adsorption of hydrogen was done by volumetric method. High adsorption capacity was achieved in nanoporous graphene because of its high pore volume (2.11 cm3/g) and large specific surface area (850 m2/g). Hydrogen adsorption values for nanoporous graphene, graphene and graphene oxide were determined as 2.56, 1.70 and 0.74 wt%, respectively. In addition, the hydrogen adsorption of graphene nanostructures fitted nicely to the selected two‐parameter and three‐parameter adsorption isotherm models. The adsorption isotherm model coefficients have been found for a 0–34 bar pressure range. The parameter values for all adsorbents showed proper conformity to the model and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号