全文获取类型
收费全文 | 26882篇 |
免费 | 2702篇 |
国内免费 | 1748篇 |
专业分类
化学 | 19229篇 |
晶体学 | 226篇 |
力学 | 89篇 |
综合类 | 38篇 |
数学 | 20篇 |
物理学 | 11730篇 |
出版年
2024年 | 43篇 |
2023年 | 205篇 |
2022年 | 708篇 |
2021年 | 721篇 |
2020年 | 845篇 |
2019年 | 831篇 |
2018年 | 703篇 |
2017年 | 788篇 |
2016年 | 1270篇 |
2015年 | 1269篇 |
2014年 | 1258篇 |
2013年 | 2255篇 |
2012年 | 1605篇 |
2011年 | 1768篇 |
2010年 | 1478篇 |
2009年 | 1873篇 |
2008年 | 1760篇 |
2007年 | 1872篇 |
2006年 | 1704篇 |
2005年 | 1346篇 |
2004年 | 1162篇 |
2003年 | 974篇 |
2002年 | 755篇 |
2001年 | 598篇 |
2000年 | 543篇 |
1999年 | 496篇 |
1998年 | 412篇 |
1997年 | 377篇 |
1996年 | 308篇 |
1995年 | 261篇 |
1994年 | 188篇 |
1993年 | 176篇 |
1992年 | 147篇 |
1991年 | 110篇 |
1990年 | 72篇 |
1989年 | 61篇 |
1988年 | 108篇 |
1987年 | 48篇 |
1986年 | 32篇 |
1985年 | 28篇 |
1984年 | 31篇 |
1982年 | 26篇 |
1981年 | 28篇 |
1980年 | 22篇 |
1979年 | 7篇 |
1978年 | 9篇 |
1976年 | 7篇 |
1973年 | 10篇 |
1972年 | 7篇 |
1971年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Rice blast is a serious threat to rice yield. Breeding disease-resistant varieties is one of the most economical and effective ways to prevent damage from rice blast. The traditional identification of resistant rice seeds has some shortcoming, such as long possession time, high cost and complex operation. The purpose of this study was to develop an optimal prediction model for determining resistant rice seeds using Ranman spectroscopy. First, the support vector machine (SVM), BP neural network (BP) and probabilistic neural network (PNN) models were initially established on the original spectral data. Second, due to the recognition accuracy of the Raw-SVM model, the running time was fast. The support vector machine model was selected for optimization, and four improved support vector machine models (ABC-SVM (artificial bee colony algorithm, ABC), IABC-SVM (improving the artificial bee colony algorithm, IABC), GSA-SVM (gravity search algorithm, GSA) and GWO-SVM (gray wolf algorithm, GWO)) were used to identify resistant rice seeds. The difference in modeling accuracy and running time between the improved support vector machine model established in feature wavelengths and full wavelengths (200–3202 cm−1) was compared. Finally, five spectral preproccessing algorithms, Savitzky–Golay 1-Der (SGD), Savitzky–Golay Smoothing (SGS), baseline (Base), multivariate scatter correction (MSC) and standard normal variable (SNV), were used to preprocess the original spectra. The random forest algorithm (RF) was used to extract the characteristic wavelengths. After different spectral preproccessing algorithms and the RF feature extraction, the improved support vector machine models were established. The results show that the recognition accuracy of the optimal IABC-SVM model based on the original data was 71%. Among the five spectral preproccessing algorithms, the SNV algorithm’s accuracy was the best. The accuracy of the test set in the IABC-SVM model was 100%, and the running time was 13 s. After SNV algorithms and the RF feature extraction, the classification accuracy of the IABC-SVM model did not decrease, and the running time was shortened to 9 s. This demonstrates the feasibility and effectiveness of IABC in SVM parameter optimization, with higher prediction accuracy and better stability. Therefore, the improved support vector machine model based on Ranman spectroscopy can be applied to the fast and non-destructive identification of resistant rice seeds. 相似文献
72.
In this paper, the photochemistry of glyoxal–hydroxylamine (Gly–HA) complexes is studied using FTIR matrix isolation spectroscopy and ab initio calculations. The irradiation of the Gly–HA complexes with the filtered output of a mercury lamp (λ > 370 nm) leads to their photoconversion to hydroxyketene–hydroxylamine complexes and the formation of hydroxy(hydroxyamino)acetaldehyde with a hemiaminal structure. The first product is the result of a double hydrogen exchange reaction between the aldehyde group of Gly and the amino or hydroxyl group of HA. The second product is formed as a result of the addition of the nitrogen atom of HA to the carbon atom of one aldehyde group of Gly, followed by the migration of the hydrogen atom from the amino group of hydroxylamine to the oxygen atom of the carbonyl group of glyoxal. The identification of the products is confirmed by deuterium substitution and by MP2 calculations of the structures and vibrational spectra of the identified species. 相似文献
73.
Angelika Wrzesiska Emilia Tomaszewska Katarzyna Ranoszek-Soliwoda Izabela Bobowska Jarosaw Grobelny Jacek Ulaski Aleksandra Wypych-Puszkarz 《Molecules (Basel, Switzerland)》2022,27(11)
At this time, the development of advanced elastic dielectric materials for use in organic devices, particularly in organic field-effect transistors, is of considerable interest to the scientific community. In the present work, flexible poly(dimethylsiloxane) (PDMS) specimens cross-linked by means of ZnCl2-bipyridine coordination with an addition of 0.001 wt. %, 0.0025 wt. %, 0.005 wt. %, 0.04 wt. %, 0.2 wt. %, and 0.4 wt. % of gold nanoparticles (AuNPs) were prepared in order to understand the effect of AuNPs on the electrical properties of the composite materials formed. The broadband dielectric spectroscopy measurements revealed one order of magnitude decrease in loss tangent, compared to the coordinated system, upon an introduction of 0.001 wt. % of AuNPs into the polymeric matrix. An introduction of AuNPs causes damping of conductivity within the low-temperature range investigated. These effects can be explained as a result of trapping the Cl− counter ions by the nanoparticles. The study has shown that even a very low concentration of AuNPs (0.001 wt. %) still brings about effective trapping of Cl− counter anions, therefore improving the dielectric properties of the investigated systems. The modification proposed reveals new perspectives for using AuNPs in polymers cross-linked by metal-ligand coordination systems. 相似文献
74.
Johannes Wellmann Beate Hartmann Esther-Corinna Schwarze Silke Hillebrand Stephan I. Brueckner Jakob Ley Gerold Jerz Peter Winterhalter 《Molecules (Basel, Switzerland)》2022,27(11)
Previously, different Hydrangea macrophylla ssp. serrata cultivars were investigated by untargeted LC-MS analysis. From this, a list of tentatively identified and unknown compounds that differ significantly between these cultivars was obtained. Due to the lack of reference compounds, especially for dihydro-isocoumarins, we aimed to isolate and structurally characterise these compounds from the cultivar ‘Yae-no-amacha’ using NMR and LC-MS methods. For purification and isolation, counter-current chromatography was used in combination with reversed-phase preparative HPLC as an orthogonal and enhanced purification workflow. Thirteen dihydro-isocoumarins in combination with other metabolites could be isolated and structurally identified. Particularly interesting was the clarification of dihydrostilbenoid glycosides, which were described for the first time in H. macrophylla ssp. serrata. These results will help us in further studies on the biological interpretation of our data. 相似文献
75.
Wearing surgical face masks is among the measures taken to mitigate coronavirus disease (COVID-19) transmission and deaths. Lately, concern was expressed about the possibility that gases from respiration could build up in the mask over time, causing medical issues related to the respiratory system. In this research study, the carbon dioxide concentration and ethylene in the breathing zone were measured before and immediately after wearing surgical face masks using the photoacoustic spectroscopy method. From the determinations of this study, the C2H4 was established to be increased by 1.5% after one hour of wearing the surgical face mask, while CO2 was established to be at a higher concentration of 1.2% after one hour of wearing the surgical face mask, when the values were correlated with the baseline (control). 相似文献
76.
Jonas Bruckhuisen Sathapana Chawananon Isabelle Kleiner Anthony Roucou Guillaume Dhont Colwyn Bracquart Pierre Asselin Arnaud Cuisset 《Molecules (Basel, Switzerland)》2022,27(11)
Methylfurans are methylated aromatic heterocyclic volatile organic compounds and primary or secondary pollutants in the atmosphere due to their capability to form secondary organic aerosols in presence of atmospheric oxidants. There is therefore a significant interest to monitor these molecules in the gas phase. High resolution spectroscopic studies of methylated furan compounds are generally limited to pure rotational spectroscopy in the vibrational ground state. This lack of results might be explained by the difficulties arisen from the internal rotation of the methyl group inducing non-trivial patterns in the rotational spectra. In this study, we discuss the benefits to assign the mm-wave rotational-torsional spectra of methylfuran with the global approach of the BELGI-C code compared to local approaches such as XIAM and ERHAM. The global approach reproduces the observed rotational lines of 2-methylfuran and 3-methylfuran in the mm-wave region at the experimental accuracy for the ground v and the first torsional v states with a unique set of molecular parameters. In addition, the and parameters describing the internal rotation potential barrier may be determined with a high degree of accuracy with the global approach. Finally, a discussion with other heterocyclic compounds enables the study of the influence of the electronic environment on the hindered rotation of the methyl group. 相似文献
77.
The present review covers reports discussing potential applications of the specificity of Raman techniques in the advancement of digital farming, in line with an assumption of yield maximisation with minimum environmental impact of agriculture. Raman is an optical spectroscopy method which can be used to perform immediate, label-free detection and quantification of key compounds without destroying the sample. The authors particularly focused on the reports discussing the use of Raman spectroscopy in monitoring the physiological status of plants, assessing crop maturity and quality, plant pathology and ripening, and identifying plant species and their varieties. In recent years, research reports have presented evidence confirming the effectiveness of Raman spectroscopy in identifying biotic and abiotic stresses in plants as well as in phenotyping and digital selection of plants in farming. Raman techniques used in precision agriculture can significantly improve capacities for farming management, crop quality assessment, as well as biological and chemical contaminant detection, thereby contributing to food safety as well as the productivity and profitability of agriculture. This review aims to increase the awareness of the growing potential of Raman spectroscopy in agriculture among plant breeders, geneticists, farmers and engineers. 相似文献
78.
Joy Udensi Ekaterina Loskutova James Loughman Hugh J. Byrne 《Molecules (Basel, Switzerland)》2022,27(15)
Carotenoids are naturally abundant, fat-soluble pigmented compounds with dietary, antioxidant and vision protection advantages. The dietary carotenoids, Beta Carotene, Lutein, and Zeaxanthin, complexed with in bovine serum albumin (BSA) in aqueous solution, were explored using Raman spectroscopy to differentiate and quantify their spectral signatures. UV visible absorption spectroscopy was employed to confirm the linearity of responses over the concentration range employed (0.05–1 mg/mL) and, of the 4 Raman source wavelengths (785 nm, 660 nm, 532 nm, 473 nm), 532 nm was chosen to provide the optimal response. After preprocessing to remove water and BSA contributions, and correct for self-absorption, a partial least squares model with R2 of 0.9995, resulted in an accuracy of the Root Mean Squared Error of Prediction for Beta Carotene of 0.0032 mg/mL and Limit of Detection 0.0106 mg/mL. Principal Components Analysis clearly differentiated solutions of the three carotenoids, based primarily on small shifts of the main peak at ~1520 cm−1. Least squares fitting analysis of the spectra of admixtures of the carotenoid:protein complexes showed reasonable correlation between norminal% and fitted%, yielding 100% contribution when fitted with individual carotenoid complexes and variable contributions with multiple ratios of admixtures. The results indicate the technique can potentially be used to quantify the carotenoid content of human serum and to identify their differential contributions for application in clinical analysis. 相似文献
79.
Margherita Longoni Carlotta Beccaria Letizia Bonizzoni Silvia Bruni 《Molecules (Basel, Switzerland)》2022,27(14)
In several of his artworks, for instance the Venezie cycle, Fontana employed metallic paints; previous investigations on such materials highlighted the use of different synthetic binders and of thick paint layers below the metal one, having different colours to change the visual perception of the metallic surface. In the present work, a monochrome silver “Concetto spaziale” by the Italo–Argentine artist belonging to a private collection recently gifted to the museum of the Church of San Fedele in Milano, Italy, was investigated to deepen the knowledge of this particular group of Fontana’s paintings. The artwork was initially visually inspected in visible and ultraviolet (UV) light. Subsequently, a non-invasive spectroscopic investigation was performed by X-ray fluorescence (XRF), reflection Fourier-transform infrared (FTIR) and Raman spectroscopy. A minute fragment of silver-coloured paint was taken from the reverse of the painting, near the cut edge, and examined by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX) and micro-Fourier-transform Raman (FT-Raman) spectroscopy. The analytical data made it possible to identify the composition of the metallic paint layer and of the underlying dark one, both from the point of view of the pigments and of the binders used, also highlighting the potential of the non-invasive and micro-invasive methods adopted in the investigation. 相似文献
80.
Jaime Aspas-Caceres Marc Rico-Pasto Isabel Pastor Felix Ritort 《Entropy (Basel, Switzerland)》2022,24(7)
Nonequilibrium work relations and fluctuation theorems permit us to extract equilibrium information from nonequilibrium measurements. They find application in single-molecule pulling experiments where molecular free energies can be determined from irreversible work measurements by using unidirectional (e.g., Jarzynski’s equality) and bidirectional (e.g., Crooks fluctuation theorem and Bennet’s acceptance ratio (BAR)) methods. However, irreversibility and the finite number of pulls limit their applicability: the higher the dissipation, the larger the number of pulls necessary to estimate G within a few . Here, we revisit pulling experiments on an RNA three-way junction (3WJ) that exhibits significant dissipation and work-distribution long tails upon mechanical unfolding. While bidirectional methods are more predictive, unidirectional methods are strongly biased. We also consider a cyclic protocol that combines the forward and reverse work values to increase the statistics of the measurements. For a fixed total experimental time, faster pulling rates permit us to efficiently sample rare events and reduce the bias, compensating for the increased dissipation. This analysis provides a more stringent test of the fluctuation theorem in the large irreversibility regime. 相似文献