首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   6篇
  国内免费   13篇
化学   22篇
晶体学   5篇
力学   9篇
综合类   1篇
物理学   27篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
  1977年   1篇
排序方式: 共有64条查询结果,搜索用时 31 毫秒
21.
采用化学气相沉积(CVD)法,在304型不锈钢管道内壁分别沉积了TiN和TiC涂层,并采用SEM、EDS、金相显微镜和热冲击等方法对其进行了性能表征和测试。结果表明,两种涂层均匀致密,TiN涂层厚度为7.24μm,TiC涂层为11.52μm,且均具有良好的结合强度。为评价涂层抑制结焦效果,选用某碳氢燃料A,采取程序升温法进行超临界裂解实验,当反应管前后压差超过1 MPa时停止实验,结果表明,304空白管由于严重结焦,在650℃只运行了180 s;而TiC和TiN涂层管分别在780℃运行了275和1560 s。通过压差、产气组成和积炭微观形貌的综合分析表明,TiN、TiC涂层均呈现出优良的抑焦效果,且TiN涂层抑焦效果更优。  相似文献   
22.
稀土对AlTiC细化剂组织及细化效果的影响   总被引:15,自引:3,他引:15  
应用自蔓延高温合成法制备出含稀土及不含稀土两种AlTiC细化剂. 应用扫描电镜及X射线衍射等手段分析了中间合金及细化剂的成分、组织和形貌. 结果表明: 稀土对反应合成TiC微细颗粒具有重要的促进作用, 添加稀土明显加快反应速度; 在AlTiCRE细化剂中, 由于稀土的作用, 改变了TiAl3和TiC的形态和分布, 减小了TiC的聚集倾向, 细化了TiC颗粒尺寸, 从而增加了形核基底数. AlTiCRE细化晶粒的效果优于AlTiC, 而且稀土还具有明显细化枝晶组织的作用.  相似文献   
23.
Abstract

Aluminum-based composites containing 0.06, 0.09, 0.12 fractions of in situ-synthesized TiC (Titanium carbide) particles have been prepared through in-melt reaction from Ai–SiC–Ti system following a simple and cost-effective stir-casting route. The TiC forms by the reaction of Ti with carbon which is released by SiC at temperatures greater than 1073 K. However, some amount of titanium aluminide (Al3Ti) is also formed. The formation of TiC has been confirmed through X-ray diffraction studies of the composite. The hardness and tensile strength have been found to increase with increasing amount of TiC. The friction and wear characteristics of the composites have been determined by carrying out dry sliding tests on pin-on-disc machine at different loads of 9.8 N, 19.6 N, 29.4 N, 39.2 N at a constant sliding speed of the 1 m/s speed. The wear rate i.e. volume loss per unit sliding distance has been found to increase linearly with increasing load following Archard’s law. However, both the wear rate and friction coefficient have been observed to decrease with increasing amount of TiC in the composite. This has been attributed to (i) a relatively higher hardness of composites containing relatively higher amount of TiC resulting in a relatively lower real area of contact and (ii) the formation of a well-compacted mechanically mixed layer of compacted wear debris on the worn surface which might have inhibited metal–metal contact and resulted in a lower wear rate as well as friction coefficient.  相似文献   
24.
In this study, the effect of TiC nanoparticles as a reinforcement on the mechanical and tribological properties of Aluminum-based self lubricating composite was investigated. The microstructure, relative density, hardness, and tribological properties of Al/graphite and Al/TiC/graphite composites were examined as a function of graphite content. The tribo-surfaces of the samples were analyzed using SEM and EDS elemental mapping. The results indicated that the addition of TiC nanoparticles not only decreased the wear rate and coefficient of friction of the composites, but also facilitated the formation of a stable graphite layer at longer sliding distances and high sliding velocities by forming a durable graphite/TiC composite on the tribo-surface. Therefore, the stability of graphite layer can be considered as a possible cause for decrease in wear rate of the Al/TiC/graphite composite.  相似文献   
25.
This article describes the interfacial regions in CVD grown TiC/κ-Al2O3 multilayers. A number of microanalytical techniques were used including HREM, EDX and EELS. Occasionally, the first 50 nm of the alumina layers deposited on the intermediate TiC layers grew as a cubic alumina, heavily faulted, containing small amounts of sulphur (S), maybe as a stabiliser. The presence of slightly rounded TiC (111) facets may act as preferred nucleation sites for the cubic Al2O3 phase, with a ‘cube on cube’ orientation relationship. In this way the nucleation of κ-Al2O3 is less favourable. After some tens of nanometres the cubic phase cannot be stabilised any longer and the layer continues to grow as κ-Al2O3. A number of observations point towards the reaction zone (RZ) being η- and/or γ-Al2O3. The diffraction work and the FFT analysis of the HREM images show that the RZ is an fcc phase with a=7.9 Å, which matches with η- and γ-Al2O3. The EELS Al fine structure indicate more tetrahedral Al ions than in κ-Al2O3, as in η- and γ-Al2O3. The RZ contains small amounts of S, as has been reported for γ-Al2O3. Due to the structural similarities between η- and γ-Al2O3 it was not possible to determine which of these cubic phases is present in the RZ.  相似文献   
26.
稀土对TiC基金属陶瓷耐磨堆焊材料组织性能的影响   总被引:5,自引:3,他引:2  
应用扫描电镜、透射电镜等测试手段和冲击试验,磨损试验,研究了TiC基金属陶瓷堆焊材料中加入稀土氧化物,对堆焊材料的组织,界面相结合,显微硬度,冲击韧性和磨损性能的影响,初步探讨了稀土氧化物改善界面显微结构,提高的胎体金属韧性的作用机制,研究结果表明,稀土氧化物能细化堆焊层胎体金属组织,消除胎体金属的缺陷,细化胎体金属断口韧窝并使撕裂棱数量增加,提高堆焊层冲击韧性和塑性,促使金属基陶瓷与胎体金属界面成多晶过渡区和局部非晶态物相,提高界面的结合强度,稀土氧化物的加入对胎体金属显微硬度的影响不大,但能显著提高堆焊层干摩擦磨损状态下的耐磨性,具有一定的减摩作用。  相似文献   
27.
We have conducted a soft X-ray emission spectroscopy (SXES) and a photoemission electron microscopy (PEEM) study on the heat-treated Ti/4H–SiC system. This spectro-microscopy approach is an ideal surface and interface characterization techniques due to the non-destructive nature of SXES and the real-time surface imaging of PEEM.

The Si L2,3 and C K soft X-ray emission spectra, which reflect Si (s+d) states and C p states, respectively, revealed formations of Ti5Si3 and TiC in the reacted interfacial region of Ti (50 nm)/4H–SiC(0 0 0 1) sample.

The surface of the Ti films on 4H–SiC samples during heat-treatment up to 850 °C was investigated by PEEM. The variation in brightness in the image of the sample was attributed to the surface deoxidation in the early stage of the treatment and to the formation of reacted region at the later stage. The darkening of the surface could be attributed to the formation of TiC and/or excess C atoms that could have migrated to the surface.  相似文献   

28.
We have demonstrated a novel method to generate the nanostructured substrate that shows a large enhancement with a spatially uniform enhancement factor of approximately 106 in surface enhanced Raman scattering (SERS). The substrates are fabricated using plasma selective etching. First, the Al2O3TiC template which contains mixed Al2O3 and TiC grains with the diameters of ~400 nm is selected as a base plate. The Al2O3 and TiC grains have different physical properties, such as hardness, which corresponds to different etching rate in a plasma gas. Then, the Al2O3TiC substrate is selectively etched to generate a random macro‐texture (MT) with different depths using the plasma of mixed gas of Ar and C2H4. Third, the MT substrate is deposited with a silver film (Ag). We further demonstrate that by varying the thickness of Ag layer, the EF is different which is confirmed by the plasmonic localized electric fields calculations using finite difference time domain. Finally, we combine this novel Ag MT substrate with ultrathin dielectric film, and the prepared substrates are coated with a 10 Å ta‐C film. The 10 Å ta‐C film can protect the oxygen‐free Ag in air and prevent Ag ionizing in aqueous solutions. More importantly, the ultrathin ta‐C can release the strongest plasmonic electric field to the outside of ta‐C layer and get a higher electric field than the uncoated Ag substrate. We expect that this method has more potential applications in analytic assays using SERS technology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
29.
TiC/a‐C:H and a‐C:H nanocomposite coatings were prepared on AISI 440C steel substrates using magnetron sputtering process. A comparative study was made on their composition and microstructure by Raman spectroscopy and high‐resolution transmission electron microscopy (HRTEM). The tribological properties of two types of carbon‐based coatings were investigated by pin‐on‐disc tribometer under the sand‐dust conditions concerning the influence of applied load, amount of sand and sand particle sizes. The results show that these carbon‐based coatings exhibited high tribological performance with low friction coefficient and wear rate under the sand‐dust environments. However, the TiC/a‐C:H coatings exhibit relatively higher fluctuant friction coefficient as well as higher wear rate in comparison with the a‐C:H coatings under sand‐dust environments. The formation of nanocrystalline hard TiC phase distributed in amorphous carbon matrix decreased the residual stress but significantly increased the hardness and Young's modulus of TiC/a‐C:H coatings, and consequently caused a relatively higher abrasive and fatigue wear loss under the sand‐dust conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
30.
采用无压反应烧结技术制备Ti3SiC2/TiC复合材料,利用XRD-7000型衍射仪、INSTRON-1195型电子万能试验机、JSM-6700F型扫描电子显微镜、HST-100型摩擦磨损试验机对Ti3SiC2/TiC复合材料烧结试样的相组成、抗弯强度、断口显微形貌和载流摩擦磨损性能进行了研究.结果表明:在1550℃下可制备得到均匀致密的Ti3SiC2/TiC复合材料;随着试样中TiC含量的增加,复合材料抗弯强度逐渐增大;当TiC质量分数达到18%左右时,抗弯强度明显增加,摩擦系数趋于稳定,磨损率快速下降;电流强度是Ti3SiC2/TiC复合材料摩擦磨损性能的主要影响因素,随着试验电流强度的增强,摩擦系数和磨损率明显增大;同时在摩擦表面生成一层熔融状氧化膜(非载流:SiO2、TiO2和FeTiO3载流:FeTiO3和Fe2.35Ti0.65O4),主要磨损形式为电弧烧蚀和氧化磨损.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号