首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2867篇
  免费   244篇
  国内免费   261篇
化学   1223篇
晶体学   10篇
力学   173篇
综合类   14篇
数学   558篇
物理学   1394篇
  2024年   4篇
  2023年   51篇
  2022年   33篇
  2021年   38篇
  2020年   63篇
  2019年   64篇
  2018年   82篇
  2017年   101篇
  2016年   123篇
  2015年   134篇
  2014年   172篇
  2013年   237篇
  2012年   165篇
  2011年   206篇
  2010年   157篇
  2009年   212篇
  2008年   181篇
  2007年   194篇
  2006年   146篇
  2005年   146篇
  2004年   117篇
  2003年   94篇
  2002年   94篇
  2001年   72篇
  2000年   66篇
  1999年   58篇
  1998年   50篇
  1997年   51篇
  1996年   27篇
  1995年   41篇
  1994年   22篇
  1993年   18篇
  1992年   14篇
  1991年   14篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   17篇
  1986年   12篇
  1985年   11篇
  1984年   6篇
  1983年   8篇
  1982年   6篇
  1981年   13篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1975年   2篇
  1971年   2篇
  1967年   1篇
排序方式: 共有3372条查询结果,搜索用时 218 毫秒
991.
合成了一种新型可聚合型含钆单体,在温敏单体N-异丙基丙烯酰胺存在下,采用无皂乳液聚合法一步制备了含钆温度敏感的高分子微球.透射电子显微镜测试表明微球呈单分散性;动态光散射测试表明高分子微球的平均水合粒径约260 nm,呈现很窄的粒径分布;当温度从25℃升到45℃时,其粒径减小约60 nm,表明含钆高分子微球具有较好的温度敏感性.体外MRI测试表明,所得高分子微球的体外弛豫率为8.01(mmol/L)-1S-1(3 T),能有效的增强MRI信号,具有优良的MRI造影功能.上述结果表明,所得微球作为一种多功能MRI造影剂,在生物医学领域极具应用前景.  相似文献   
992.
We outline here a self-consistent approach to the calculation of transition energies within density functional theory. The method is based on constricted variational theory (CV-DFT). It constitutes in the first place an improvement over a previous scheme [T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, F. Wang, Chem. Phys. 130 (2009) 154102] in that it includes terms in the variational parameters to any desired order n including n = ∞. For n = 2, CV(n)-DFT is similar to TD-DFT. Adiabatic TD-DFT becomes identical to CV(2)-DFT after the Tamm-Dancoff approximation is applied to both theories. We have termed the new scheme CV(n)-DFT. In the second place, the scheme can be implemented self-consistently, SCF-CV(n)-DFT. The procedure outlined here could also be used to formulate a SCF-CV(n) Hartree-Fock theory. The approach is further kindred to the ΔSCF-DFT procedures predating TD-DFT and we describe how adiabatic TD-DFT and ΔSCF-DFT are related through different approximations to SCF-CV(n)-DFT.  相似文献   
993.
To study the leakage at different solution pH values, IgG Sepharose 6FF®, a commercially available immunoadsorbent, was used as a model. The leaked substance consists of three parts: (1) ligands and its fragments; (2) ligands plus matrix fragments in which ligands are chemically attached to the adsorbent matrix; and (3) matrix fragments. Buffer solution pH values had a great effect on both the kinetics and the amount of ligand leakage. Cross‐linking of the adsorbent matrix could reduce both matrix leakage and antibody leakage at pH 3.0, but its effect was limited at pH 11.0 for ligand leakage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
994.
A variational multiscale method for computations of incompressible Navier–Stokes equations in time‐dependent domains is presented. The proposed scheme is a three‐scale variational multiscale method with a projection‐based scale separation that uses an additional tensor valued space for the large scales. The resolved large and small scales are computed in a coupled way with the effects of unresolved scales confined to the resolved small scales. In particular, the Smagorinsky eddy viscosity model is used to model the effects of unresolved scales. The deforming domain is handled by the arbitrary Lagrangian–Eulerian approach and by using an elastic mesh update technique with a mesh‐dependent stiffness. Further, the choice of orthogonal finite element basis function for the resolved large scale leads to a computationally efficient scheme. Simulations of flow around a static beam attached to a square base, around an oscillating beam and around a plunging aerofoil are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
995.
996.
Using experimental measurements of the open-circuit voltage and the short-circuit current density at different temperatures, for a solar cell, we investigate numerically the band gap evolution with temperature for the semiconductor constituting the concerned device. The application of the approach in the case of silicon semiconductor gives satisfying results compared to previous works.  相似文献   
997.
Confined and semi-closed explosions of new class of energetic composites as well as TNT and RDX charges were investigated using optical spectroscopy. These composites are considered as thermobarics when used in layered charges or enhanced blast explosives when pressed. Two methods to estimate fireball temperature histories of both homogeneous and metallized explosives from the spectroscopic data are also presented, compared and analyzed. Fireball temperature results of the charges detonated in a small explosion chamber under air and argon atmospheres, and detonated in a semi-closed bunker are presented and compared with theoretical ones calculated by a thermochemical code. Important conclusions about the fireball temperatures and the physical and chemical phenomena occurring after the detonation of homogeneous explosives and composite formulations are deduced.  相似文献   
998.
DNA molecules in the familiar Watson–Crick double helical B form can be treated as though they have rod-like structures obtained by stacking dominoes one on top of another with each rotated by approximately one-tenth of a full turn with respect to its immediate predecessor in the stack. These “dominoes” are called base pairs. A recently developed theory of sequence-dependent DNA elasticity (Coleman, Olson, & Swigon, J. Chem. Phys. 118:7127–7140, 2003) takes into account the observation that the step from one base pair to the next can be one of several distinct types, each having its own mechanical properties that depend on the nucleotide composition of the step. In the present paper, which is based on that theory, emphasis is placed on the fact that, as each base in a base pair is attached to the sugar-phosphate backbone chain of one of the two DNA strands that have come together to form the Watson–Crick structure, and each phosphate group in a backbone chain bears one electronic charge, two such charges are associated with each base pair, which implies that each base pair is subject to not only the elastic forces and moments exerted on it by its neighboring base pairs but also to long range electrostatic forces that, because they are only partially screened out by positively charged counter ions, can render the molecule’s equilibrium configurations sensitive to changes in the concentration c of salt in the medium. When these electrostatic forces are taken into account, the equations of mechanical equilibrium for a DNA molecule with N + 1 base pairs are a system of μN non-linear equations, where μ, the number of kinematical variables describing the relative displacement and orientation of adjacent pairs is in general 6; it reduces to 3 when base-pair steps are assumed to be inextensible and non-shearable. As a consequence of the long-range electrostatic interactions of base pairs, the μN × μN Jacobian matrix of the equations of equilibrium is full. An efficient numerically stable computational scheme is here presented for solving those equations and determining the mechanical stability of the calculated equilibrium configurations. That scheme is employed to compute and analyze bifurcation diagrams in which c is the bifurcation parameter and to show that, for an intrinsically curved molecule, small changes in c can have a strong effect on stable equilibrium configurations. Cases are presented in which several stable configurations occur at a single value of c.   相似文献   
999.
A temperature-dependent anisotropic material model was developed for two aluminum alloys AA5182-O and AA5754-O and their anisotropy parameters were established. A coupled thermo-mechanical finite element analysis of the forming process was then performed for the temperature range 25–260 °C (77–500 °F) at different strain rates. In the developed model, the anisotropy coefficients for Barlat’s YLD2000-2d anisotropic yield function [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., Chu, E., 2003. Plane stress yield function for aluminum alloy sheets – Part 1: Theory. Int. J. Plasticity 19, 1297–1319] in the plane-stress condition and the parameters for the isotropic strain hardening were established as a function of temperature. The temperature-dependent anisotropic yield function was then implemented into the commercial FEM code LS-DYNA as a user material subroutine (UMAT) using the cutting-plane algorithm for the integration of a general class of elastoplastic constitutive models [Abedrabbo, N., Pourboghrat, F., Carsley, J., 2006b. Forming of aluminum alloys at elevated temperatures – Part 2: Numerical modeling and experimental verification. Int. J. Plasticity 22 (2), 342–737]. The temperature-dependent material model was used to simulate the coupled thermo-mechanical finite element analysis of the stamping of an aluminum sheet using a hemispherical punch under the pure stretch boundary condition (no material draw-in was allowed). Simulation results were compared with experimental data at several elevated temperatures to evaluate the accuracy of the UMAT’s ability to predict both forming behavior and failure locations. Two failure criteria were used in the analysis; the M–K strain based forming limit diagrams (ε-FLD), and the stress based forming limit diagrams (σ-FLD). Both models were developed using Barlat’s YLD2000-2d anisotropic model for the two materials at several elevated temperatures. Also, as a design tool, the Genetic Algorithm optimization program HEEDS was linked with the developed thermo-mechanical models and used to numerically predict the “optimum” set of temperatures that would generate the maximum formability for the two materials in the pure stretch experiments. It was found that a higher temperature is not needed to form the part, but rather the punch should be maintained at the lowest temperature possible for maximum formability.  相似文献   
1000.
This paper presents an investigation on the effects of superimposed temperature deviations as a control technique for the flows and mixing in lower half heated upper half cooled enclosures. Results show that the strength of the wall layer depends on the difference between the wall surface temperature and the fluid core temperature. The location of the head-on collision between a pair of upward/downward wall layers, which controls the mixing and fluid exchange between the two halves, is determined by the wall layer flow momentum strengths. Elevating/reducing the wall temperature by a superimposed temperature deviation is an effective control for the flow and mixing in such enclosures. Heat transfer analysis shows that the superimposed temperature deviations have minor effects on the total heat flow rate from the lower walls. Thus, this technique can be applied onto reactor vessels without modifying the reactor vessel configuration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号