首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4816篇
  免费   1030篇
  国内免费   736篇
化学   4135篇
晶体学   40篇
力学   223篇
综合类   22篇
数学   59篇
物理学   2103篇
  2024年   17篇
  2023年   66篇
  2022年   153篇
  2021年   174篇
  2020年   255篇
  2019年   189篇
  2018年   155篇
  2017年   175篇
  2016年   253篇
  2015年   254篇
  2014年   333篇
  2013年   413篇
  2012年   342篇
  2011年   348篇
  2010年   277篇
  2009年   325篇
  2008年   340篇
  2007年   276篇
  2006年   277篇
  2005年   241篇
  2004年   274篇
  2003年   202篇
  2002年   154篇
  2001年   128篇
  2000年   124篇
  1999年   112篇
  1998年   98篇
  1997年   92篇
  1996年   97篇
  1995年   60篇
  1994年   71篇
  1993年   49篇
  1992年   56篇
  1991年   31篇
  1990年   27篇
  1989年   18篇
  1988年   21篇
  1987年   15篇
  1986年   20篇
  1985年   6篇
  1984年   8篇
  1982年   12篇
  1981年   9篇
  1980年   7篇
  1979年   9篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有6582条查询结果,搜索用时 11 毫秒
41.
Photocatalytic overall water splitting by sulfide‐based materials is a great challenge because of the poor resilience of such materials against hole oxidation. In a recent study, Domen and co‐workers developed an innovative strategy to stabilize sulfide‐based photocatalysts by hybridizing S 3p with O 2p orbitals to produce oxysulfides in which S2? is stable. Further surface engineering of the oxysulfides with dual co‐catalysts promoted charge separation and interface transfer, thus reducing the charge build‐up that inhibits photocorrosion. The pH value of the reaction mixture is a critical consideration for achieving efficient stoichiometric H2 and O2 evolution by these oxysulfide photocatalysts.  相似文献   
42.
The nature of the 2e/12c bond and its conversion to a carbon-carbon single bond in phenalenyl dimers have prompted a great deal of interests recently. In this work, we theoretically investigated a series of π-stacking phenalenyl derivatives with 2e/12c bonding character by density functional theory (DFT) calculations to elucidate origin of this unusual bond conversion. Results show that bond-conversion of the phenalenyl dimer easily occurs at room-temperature both dynamically and thermodynamically. However, bond-conversion of hetero π-stacking adducts, in which the two center carbon atoms were substituted by boron and nitrogen atoms, respectively, is much more difficult, because the 2e/12c bond is stabilized by its charge transfer character. Consequently, the bond-conversion is an endothermic process, albeit with a low conversion barrier. Interestingly, Lewis acid-base interactions would be induced by substitution of the center nitrogen atom to phosphorus atom. The 2e/12c bond is further stabilized by 5.9 kcal mol−1 and its conversion is also thermodynamically unfavorable.  相似文献   
43.
Four new heteroleptic [Cu(NN)P2]+-type cuprous complexes— 1 -TPP, 2 -POP, 3 -Xantphos, and 4 -DPPF—were designed and synthesized using a diimine ligand 2-(2′-pyridyl)benzoxazole (2-PBO) and different phosphine ligands (TPP, triphenylphosphine; POP, bis[2-(diphenylphosphino)phenyl]ether; Xantphos, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; DPPF, 1,1′-bis(diphenylphosphino)-ferrocene). All complexes were characterized using single-crystal X-ray diffraction, spectroscopic analysis (infrared, UV–Vis.), elemental analysis, and photoluminescence (PL). Single-crystal X-ray diffraction revealed complexes 1 – 4 as isolated cation complex structures with a tetrahedral CuN2P2 coordination geometry and diverse P–Cu–P angles. Their UV–Vis. absorption spectra exhibited a blue-shift sequence in wavelength with an enlarged P–Cu–P angle from 4 to 2 then to 3 and then to 1 . The PL emission peaks of 1 – 3 also exhibited a similar blue-shift sequence ( 2 → 3 → 1 ). Their PL lifetime in microseconds (~7.5, 5.1, and 4.7 μs for 1 , 2 , and 3 , respectively) indicated that their PL behavior represents phosphorescence. Time-dependent density functional theory (TD-DFT) calculation and wavefunction analysis revealed that S1 and T1 states of 1 – 3 should be assigned as metal–ligand and ligand–ligand charge-transfer (ML + L'L)CT states. Their UV–Vis. absorption and phosphorescence should be attributed to the charge transfer from the P–Cu–P segment to the 2-PBO ligand. Therefore, as the P–Cu–P angle increased (lower HOMO), the energy of S1 and T1 states also increased, following the change of PL color.  相似文献   
44.
Although cocrystallization has provided a promising platform to develop new organic optoelectronic materials, it is still a big challenge to purposely design and achieve specific optoelectronic properties. Herein, a series of mixed-stacking cocrystals (TMFA, TMCA, and TMTQ) were designed and synthesized, and the regulatory effects of the acceptors on the co-assembly behavior, charge-transfer nature, energy-level structures, and optoelectronic characteristics were systematically investigated. The results demonstrate that it is feasible to achieve effective charge-transport tuning and photoresponse switching by carefully regulating the intermolecular charge transfer and energy orbitals. The inherent mechanisms underlying the change in these optoelectronic behaviors were analyzed in depth and elucidated to provide clear guidelines for future development of new optoelectronic materials. In addition, due to the excellent photoresponsive characteristics of TMCA, TMCA-based phototransistors were investigated with varying light wavelength and optical power, and TMCA shows the best performance among all reported cocrystals under UV illumination.  相似文献   
45.
Fluorescence–phosphorescence dual-emissive compounds are valuable tools for ratiometric luminescence sensing. Herein, it is reported that 2,5-bis(phenylsulfonyl)- and 2,5-bis[bis(4-methoxyphenyl)phosphinyl]-1,4-disiloxybenzenes exhibit dual emission with emission peaks that were easily identified without performing time-gated measurement. The disiloxybenzenes in powder simultaneously fluoresced and phosphoresced at 358–374 and 457–470 nm, respectively, under vacuum. The intensity ratios of the phosphorescence/fluorescence maxima of the disiloxybenzenes in powder and in a thin film of poly(methyl methacrylate) were sensitive to temperature and molecular oxygen, respectively. The plots of the relative intensity versus temperature or partial pressure of molecular oxygen were well fitted with calibration curves defined by an exponential approximation with excellent correlation coefficients R2 (0.9708–0.9921), demonstrating the high potential of the disiloxybenzenes as precious metal-free probes applicable to ratiometric luminescence sensing.  相似文献   
46.
A photoinduced flexible Li-CO2 battery with well-designed, hierarchical porous, and free-standing In2S3@CNT/SS (ICS) as a bifunctional photoelectrode to accelerate both the CO2 reduction and evolution reactions (CDRR and CDER) is presented. The photoinduced Li-CO2 battery achieved a record-high discharge voltage of 3.14 V, surpassing the thermodynamic limit of 2.80 V, and an ultra-low charge voltage of 3.20 V, achieving a round trip efficiency of 98.1 %, which is the highest value ever reported (<80 %) so far. These excellent properties can be ascribed to the hierarchical porous and free-standing structure of ICS, as well as the key role of photogenerated electrons and holes during discharging and charging processes. A mechanism is proposed for pre-activating CO2 by reducing In3+ to In+ under light illumination. The mechanism of the bifunctional light-assisted process provides insight into photoinduced Li-CO2 batteries and contributes to resolving the major setbacks of the system.  相似文献   
47.
Herein, the universal design of high-efficiency stimuli-responsive luminous materials endowed with mechanochromic luminescence (MCL) and thermally activated delayed fluorescence (TADF) functions is reported. The origin of the unique stimuli-triggered TADF switching for a series of carbazole–isophthalonitrile-based donor–acceptor (D–A) luminogens is demonstrated based on systematic photophysical and X-ray analysis, coupled with theoretical calculations. It was revealed that a tiny alteration of the intramolecular D–A twisting in the excited-state structures governed by the solid morphologies is responsible for this dynamic TADF switching behavior. This concept is applicable to the fabrication of bicolor emissive organic light-emitting diodes using a single TADF emitter.  相似文献   
48.
Cu2O is a typical photoelectrocatalyst for sustainable hydrogen production, while the fast charge recombination hinders its further development. Herein, Ni2+ cations have been doped into a Cu2O lattice (named as Ni-Cu2O) by a simple hydrothermal method and act as electron traps. Theoretical results predict that the Ni dopants produce an acceptor impurity level and lower the energy barrier of hydrogen evolution. Photoelectrochemical (PEC) measurements demonstrate that Ni-Cu2O exhibits a photocurrent density of 0.83 mA cm−2, which is 1.34 times higher than that of Cu2O. And the photostability has been enhanced by 7.81 times. Moreover, characterizations confirm the enhanced light-harvesting, facilitated charge separation and transfer, prolonged charge lifetime, and increased carrier concentration of Ni-Cu2O. This work provides deep insight into how acceptor-doping modifies the electronic structure and optimizes the PEC process.  相似文献   
49.
Covalent organic frameworks (COFs) enable precise integration of various organic building blocks into porous skeletons through topology predesign. Here, we report the first example of COFs by integrating electron withdrawing bromine group onto the skeletons for triboelectric nanogenerators (TENG). The resulting framework exhibits high surface area and good crystallinity. Thus, the bromine functionalized COF has more regular aligned π columns and arrays over the skeleton than bare COFs, which in turn significantly enhances charge transport ability. As a result, bromine functionalized COFs showed higher electrical output performance at 5 Hz with a peak value of short circuit current density of 43.6 μA and output voltage of 416 V, which is 2 and 1.3 times higher than those of bare COFs (21.6 μA and 318 V), respectively. These results demonstrated that this strategy for engineering electron withdrawing groups on the skeleton could open a new aspect of COFs for developing TENG devices.  相似文献   
50.
Multinuclear transition metal complexes bridged by ligands with extended π-electronic systems show a variety of complex electronic transitions and electron transfer reactions. While a systematic understanding of the photochemistry and electrochemistry has been attained for binuclear complexes, much less is known about trinuclear complexes such as hexaphenyl-5,6,11,12,17,18-hexaazatrinaphthylene-tristitanocene [(Cp2Ti)3HATN(Ph)6]. The voltammogram of [(Cp2Ti)3HATN(Ph)6] shows six oxidation and three reduction waves. Solution spectra of [(Cp2Ti)3HATN(Ph)6] and of the electrochemically formed oxidation products show electronic transitions in the UV, visible and the NIR ranges. Density functional theory (DFT) and linear response time-dependent DFT show that the three formally titanium(II) centers transfer an electron to the HATN ligand in the ground state. The optically excited transitions occur exclusively between ligand-centered orbitals. The charged titanium centers only provide an electrostatic frame to the extended π-electronic system. Complete active self-consistent field (CASSCF) calculation on a structurally simplified model compound, which considers the multi-reference character imposed by the three titanium centers, can provide an interpretation of the experimentally observed temperature-dependent magnetic behavior of the different redox states of the title compound in full consistency with the interpretation of the electronic spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号